

Cinemagoer

[image: PyPI version.] [https://pypi.org/project/cinemagoer/] [image: Supported Python versions.] [https://pypi.org/project/cinemagoer/] [image: Project license.] [https://github.com/cinemagoer/cinemagoer/blob/master/LICENSE.txt]

Cinemagoer (previously known as IMDbPY) is a Python package for retrieving and managing the data
of the IMDb [https://www.imdb.com/] movie database about movies, people and companies.

This project and its authors are not affiliated in any way to Internet Movie Database Inc.; see the DISCLAIMER.txt [https://raw.githubusercontent.com/cinemagoer/cinemagoer/master/DISCLAIMER.txt] file for details about data licenses.

Revamp notice

Starting on November 2017, many things were improved and simplified:

	moved the package to Python 3 (compatible with Python 2.7)

	removed dependencies: SQLObject, C compiler, BeautifulSoup

	removed the “mobile” and “httpThin” parsers

	introduced a test suite (please help with it! [http://cinemagoer.readthedocs.io/en/latest/devel/test.html])

Main features

	written in Python 3 (compatible with Python 2.7)

	platform-independent

	simple and complete API

	released under the terms of the GPL 2 license

Cinemagoer powers many other software and has been used in various research papers.
Curious about that [https://cinemagoer.github.io/ecosystem/]?

Installation

Whenever possible, please use the latest version from the repository:

pip install git+https://github.com/cinemagoer/cinemagoer

But if you want, you can also install the latest release from PyPI:

pip install cinemagoer

Example

Here’s an example that demonstrates how to use Cinemagoer:

from imdb import Cinemagoer

create an instance of the Cinemagoer class
ia = Cinemagoer()

get a movie
movie = ia.get_movie('0133093')

print the names of the directors of the movie
print('Directors:')
for director in movie['directors']:
 print(director['name'])

print the genres of the movie
print('Genres:')
for genre in movie['genres']:
 print(genre)

search for a person name
people = ia.search_person('Mel Gibson')
for person in people:
 print(person.personID, person['name'])

Getting help

Please refer to the support [https://cinemagoer.github.io/support/] page on the project homepage [https://cinemagoer.github.io/]
and to the the online documentation on Read The Docs [https://cinemagoer.readthedocs.io/].

The sources are available on GitHub [https://github.com/cinemagoer/cinemagoer].

Contribute

Visit the CONTRIBUTOR_GUIDE.rst [https://github.com/ethorne2/cinemagoer/blob/documentation-add-contributor-guide/CONTRIBUTOR_GUIDE.rst] to learn how you can contribute to the Cinemagoer package.

License

Copyright (C) 2004-2022 Davide Alberani <da –> mimante.net> et al.

Cinemagoer is released under the GPL license, version 2 or later.
Read the included LICENSE.txt [https://raw.githubusercontent.com/cinemagoer/cinemagoer/master/LICENSE.txt] file for details.

NOTE: For a list of persons who share the copyright over specific portions of code, see the CONTRIBUTORS.txt [https://raw.githubusercontent.com/cinemagoer/cinemagoer/master/CONTRIBUTORS.txt] file.

NOTE: See also the recommendations in the DISCLAIMER.txt [https://raw.githubusercontent.com/cinemagoer/cinemagoer/master/DISCLAIMER.txt] file.

Disclaimer

Cinemagoer and its authors are not affiliated with Internet Movie Database Inc.

IMDb is a trademark of Internet Movie Database Inc., and all content and data
included on the IMDb’s site is the property of IMDb or its content suppliers
and protected by United States and international copyright laws.

Please read the IMDb’s conditions of use on their website:

	https://www.imdb.com/conditions

	https://www.imdb.com/licensing

	any other notice on the https://www.imdb.com/ site

Contents:

	Usage
	Quick start

	Data interface

	Roles

	Series

	Adult movies

	Information in XML format

	Localization

	Access systems

	S3 datasets

	Old data files

	Development
	How to extend

	How to test

	How to translate

	How to make a release

	FAQs

	Contributors

	Change log

Indices and tables

	Index

	Module Index

	Search Page

Usage

Here you can find information about how you can use Cinemagoer in your own
programs.

Warning

This document is far from complete: the code is the final documentation! ;-)

Contents:

	Quick start
	Searching

	Retrieving

	Keywords

	Top / bottom movies

	Exceptions

	Data interface
	Information sets

	Composite data

	References

	Roles
	SQL

	Goodies

	Series
	Titles

	Full credits

	Ratings

	People

	Goodies

	Adult movies

	Information in XML format
	XML format

	References

	DTD

	Localization

	Deserializing

	Localization
	Articles in titles

	Alternative titles

	Access systems

	S3 datasets

	Old data files
	Performance

	Notes

	Advanced features

	CSV files

Quick start

The first thing to do is to import imdb and call the imdb.IMDb
function to get an access object through which IMDb data can be retrieved:

>>> import imdb
>>> ia = imdb.Cinemagoer()

By default this will fetch the data from the IMDb web server but there are
other options. See the access systems document
for more information.

Searching

You can use the search_movie method
of the access object to search for movies with a given (or similar) title.
For example, to search for movies with titles like “matrix”:

>>> movies = ia.search_movie('matrix')
>>> movies[0]
<Movie id:0133093[http] title:_The Matrix (1999)_>

Similarly, you can search for people and companies using
the search_person and
the search_company methods:

>>> people = ia.search_person('angelina')
>>> people[0]
<Person id:0001401[http] name:_Jolie, Angelina_>
>>> companies = ia.search_company('rko')
>>> companies[0]
<Company id:0226417[http] name:_RKO_>

As the examples indicate, the results are lists of
Movie, Person, or
Company objects. These behave like
dictionaries, i.e. they can be queried by giving the key of the data
you want to obtain:

>>> movies[0]['title']
'The Matrix'
>>> people[0]['name']
'Angelina Jolie'
>>> companies[0]['name']
'RKO'

Movie, person, and company objects have id attributes which
-when fetched through the IMDb web server- store the IMDb id
of the object:

>>> movies[0].movieID
'0133093'
>>> people[0].personID
'0001401'
>>> companies[0].companyID
'0226417'

Retrieving

If you know the IMDb id of a movie, you can use
the get_movie method to retrieve its data.
For example, the movie “The Untouchables” by Brian De Palma has the id
“0094226”:

>>> movie = ia.get_movie('0094226')
>>> movie
<Movie id:0094226[http] title:_The Untouchables (1987)_>

Similarly, the get_person and
the get_company methods can be used
for retrieving Person and
Company data:

>>> person = ia.get_person('0000206')
>>> person['name']
'Keanu Reeves'
>>> person['birth date']
'1964-9-2'
>>> company = ia.get_company('0017902')
>>> company['name']
'Pixar Animation Studios'

Keywords

You can search for keywords similar to the one provided:

>>> keywords = ia.search_keyword('dystopia')
>>> keywords
['dystopia', 'dystopian-future', ..., 'dystopic-future']

And movies that match a given keyword:

>>> movies = ia.get_keyword('dystopia')
>>> len(movies)
50
>>> movies[0]
<Movie id:1677720[http] title:_Ready Player One (2018)_>

Top / bottom movies

It’s possible to retrieve the list of top 250 and bottom 100 movies:

>>> top = ia.get_top250_movies()
>>> top[0]
<Movie id:0111161[http] title:_The Shawshank Redemption (1994)_>
>>> bottom = ia.get_bottom100_movies()
>>> bottom[0]
<Movie id:4458206[http] title:_Code Name: K.O.Z. (2015)_>

The get_top250_tv, get_popular100_movies, get_popular100_movies and get_top250_indian_movies methods are also available.

Exceptions

Any error related to Cinemagoer can be caught by checking for
the imdb.IMDbError exception:

from imdb import Cinemagoer, IMDbError

try:
 ia = Cinemagoer()
 people = ia.search_person('Mel Gibson')
except IMDbError as e:
 print(e)

Data interface

The Cinemagoer objects that represent movies, people and companies provide
a dictionary-like interface where the key identifies the information
you want to get out of the object.

At this point, I have really bad news: what the keys are is a little unclear!

In general, the key is the label of the section as used by the IMDb web server
to present the data. If the information is grouped into subsections,
such as cast members, certifications, distributor companies, etc.,
the subsection label in the HTML page is used as the key.

The key is almost always lowercase; underscores and dashes are replaced
with spaces. Some keys aren’t taken from the HTML page, but are defined
within the respective class.

Information sets

Cinemagoer can retrieve almost every piece of information of a movie or person
This can be a problem, because (at least for the “http” data access
system) it means that a lot of web pages must be fetched and parsed.
This can be both time- and bandwidth-consuming, especially if you’re interested
in only a small part of the information.

The get_movie,
get_person and
get_company methods take an optional
info parameter, which can be used to specify the kinds of data to fetch.
Each group of data that gets fetched together is called an “information set”.

Different types of objects have their own available information sets.
For example, the movie objects have a set called “vote details” for
the number of votes and their demographic breakdowns, whereas person objects
have a set called “other works” for miscellaneous works of the person.
Available information sets for each object type can be queried
using the access object:

>>> from imdb import Cinemagoer
>>> ia = Cinemagoer()
>>> ia.get_movie_infoset()
['airing', 'akas', ..., 'video clips', 'vote details']
>>> ia.get_person_infoset()
['awards', 'biography', ..., 'other works', 'publicity']
>>> ia.get_company_infoset()
['main']

For each object type, only the important information will be retrieved
by default:

	for a movie: “main”, “plot”

	for a person: “main”, “filmography”, “biography”

	for a company: “main”

These defaults can be retrieved from the default_info attributes
of the classes:

>>> from imdb.Person import Person
>>> Person.default_info
('main', 'filmography', 'biography')

Each instance also has a current_info attribute for tracking
the information sets that have already been retrieved:

>>> movie = ia.get_movie('0133093')
>>> movie.current_info
['main', 'plot', 'synopsis']

The list of retrieved information sets and the keys they provide can be
taken from the infoset2keys attribute:

>>> movie = ia.get_movie('0133093')
>>> movie.infoset2keys
{'main': ['cast', 'genres', ..., 'top 250 rank'], 'plot': ['plot', 'synopsis']}
>>> movie = ia.get_movie('0094226', info=['taglines', 'plot'])
>>> movie.infoset2keys
{'taglines': ['taglines'], 'plot': ['plot', 'synopsis']}
>>> movie.get('title')
>>> movie.get('taglines')[0]
'The Chicago Dream is that big'

Search operations retrieve a fixed set of data and don’t have the concept
of information sets. Therefore objects listed in searches will have even less
information than the defaults. For example, if you do a movie search operation,
the movie objects in the result won’t have many of the keys that would be
available on a movie get operation:

>>> movies = ia.search_movie('matrix')
>>> movie = movies[0]
>>> movie
<Movie id:0133093[http] title:_The Matrix (1999)_>
>>> movie.current_info
[]
>>> 'genres' in movie
False

Once an object is retrieved (through a get or a search), its data can be
updated using the update method with the desired
information sets. Continuing from the example above:

>>> 'median' in movie
False
>>> ia.update(movie, info=['taglines', 'vote details'])
>>> movie.current_info
['taglines', 'vote details']
>>> movie['median']
9
>>> ia.update(movie, info=['plot'])
>>> movie.current_info
['taglines', 'vote details', 'plot', 'synopsis']

Beware that the information sets vary between access systems:
locally not every piece of data is accessible, whereas -for example for SQL-
accessing one set of data means automatically accessing a number of other
information (without major performance drawbacks).

Composite data

In some data, the (not-so) universal :: separator is used to delimit
parts of the data inside a string, like the plot of a movie and its author:

>>> movie = ia.get_movie('0094226')
>>> plot = movie['plot'][0]
>>> plot
"1920's prohibition ... way to get him.::Jeremy Perkins <jwp@aber.ac.uk>"

As a rule, there’s at most one such separator inside a string. Splitting
the string will result in two logical pieces as in TEXT::NOTE.
The imdb.helpers.makeTextNotes() function can be used to create a custom
function to pretty-print this kind of information.

References

Sometimes the collected data contains strings with references to other movies
or persons, e.g. in the plot of a movie or the biography of a person.
These references are stored in the Movie, Person, and Character instances;
in the strings you will find values like _A Movie (2003)_ (qv)
or ‘A Person’ (qv) or ‘#A Character# (qv)’. When these strings are accessed
(like movie[‘plot’] or person[‘biography’]), they will be modified using
a provided function, which must take the string and two dictionaries
containing titles and names references as parameters.

By default the (qv) strings are converted in the “normal” format
(“A Movie (2003)”, “A Person” and “A Character”).

You can find some examples of these functions in the
imdb.utils module.

The function used to modify the strings can be set with the defaultModFunct
parameter of the IMDb class or with the modFunct parameter
of the get_movie, get_person, and get_character methods:

import imdb
i = imdb.Cinemagoer(defaultModFunct=imdb.utils.modHtmlLinks)

or:

import imdb
i = imdb.Cinemagoer()
i.get_person('0000154', modFunct=imdb.utils.modHtmlLinks)

Roles

When parsing data of a movie, you’ll encounter references to the people
who worked on it, like its cast, director and crew members.

For people in the cast (actors and actresses),
the currentRole attribute is set to the name
of the character they played:

>>> movie = ia.get_movie('0075860')
>>> movie
<Movie id:0075860[http] title:_Close Encounters of the Third Kind (1977)_>
>>> actor = movie['cast'][6]
>>> actor
<Person id:0447230[http] name:_Kemmerling, Warren J._>
>>> actor['name']
'Warren J. Kemmerling'
>>> actor.currentRole
'Wild Bill'

Miscellaneous data, such as an AKA name for the actor or an “uncredited”
notice, is stored in the notes attribute:

>>> actor.notes
'(as Warren Kemmerling)'

For crew members other than the cast,
the notes attribute contains the description
of the person’s job:

>>> crew_member = movie['art department'][0]
>>> crew_member
<Person id:0330589[http] name:_Gordon, Sam_>
>>> crew_member.notes
'property master'

The in operator can be used to check whether a person worked in a given
movie or not:

>>> movie
<Movie id:0075860[http] title:_Close Encounters of the Third Kind (1977)_>
>>> actor
<Person id:0447230[http] name:_Kemmerling, Warren J._>
>>> actor in movie
True
>>> crew_member
<Person id:0330589[http] name:_Gordon, Sam_>
>>> crew_member in movie
True
>>> person
<Person id:0000210[http] name:_Roberts, Julia (I)_>
>>> person in movie
False

Obviously these Person objects contain only information directly
available upon parsing the movie pages, e.g.: the name, an imdbID, the role.
So if now you write:

print(writer['actor'])

to get a list of movies acted by Mel Gibson, you’ll get a KeyError exception,
because the Person object doesn’t contain this kind of information.

The same is true when parsing person data: you’ll find a list of movie
the person worked on and, for every movie, the currentRole instance variable
is set to a string describing the role of the considered person:

julia = i.get_person('0000210')
for job in julia['filmography'].keys():
 print('# Job: ', job)
 for movie in julia['filmography'][job]:
 print('\t%s %s (role: %s)' % (movie.movieID, movie['title'], movie.currentRole))

Here the various Movie objects only contain minimal information,
like the title and the year; the latest movie with Julia Roberts:

last = julia['filmography']['actress'][0]
Retrieve full information
i.update(last)
name of the first director
print(last['director'][0]['name'])

Note

Since the end of 2017, IMDb has removed the Character kind of information.
This document is still valid, but only for the obsolete “sql” data access
system.

Since version 3.3, Cinemagoer supports the character pages of the IMDb database;
this required some substantial changes to how actors’ and acresses’ roles
were handled. Starting with release 3.4, “sql” data access system is supported,
too - but it works a bit differently from “http”. See “SQL” below.

The currentRole instance attribute can be found in every instance of Person,
Movie and Character classes, even if actually the Character never uses it.

The currentRole of a Person object is set to a Character instance, inside
a list of person who acted in a given movie. The currentRole of a Movie object
is set to a Character instance, inside a list of movies played be given person.
The currentRole of a Movie object is set to a Person instance, inside a list
of movies in which a given character was portrayed.

Schema:

movie['cast'][0].currentRole -> a Character object.
 |
 +-> a Person object.

person['actor'][0].currentRole -> a Character object.
 |
 +-> a Movie object.

character['filmography'][0].currentRole -> a Person object.
 |
 +-> a Movie object.

The roleID attribute can be used to access/set the characterID or personID
instance attribute of the current currentRole. When building Movie or Person
objects, you can pass the currentRole parameter and the roleID parameter
(to set the ID). The currentRole parameter can be an object
(Character or Person), a string (in which case a Character or Person object is
automatically instantiated) or a list of objects or strings (to handle multiple
characters played by the same actor/actress in a movie, or character played
by more then a single actor/actress in the same movie).

Anyway, currentRole objects (Character or Person instances) can be
pretty-printed easily: calling unicode(CharacterOrPersonObject) will return
a good-old-string.

SQL

Fetching data from the web, only characters with an active page on the web site
will have their characterID; we don’t have these information when accessing
through “sql”, so every character will have an associated characterID.
This way, every character with the same name will share the same characterID,
even if - in fact - they may not be portraying the same character.

Goodies

To help getting the required information from Movie, Person and Character
objects, in the “helpers” module there’s a new factory function,
makeObject2Txt, which can be used to create your pretty-printing function.
It takes some optional parameters: movieTxt, personTxt, characterTxt
and companyTxt; in these strings %(value)s items are replaced with
object[‘value’] or with obj.value (if the first is not present).

E.g.:

import imdb
myPrint = imdb.helpers.makeObject2Txt(personTxt=u'%(name)s ... %(currentRole)s')
i = imdb.Cinemagoer()
m = i.get_movie('0057012')
ps = m['cast'][0]
print(myPrint(ps))
The output will be something like:
Peter Sellers ... Group Captain Lionel Mandrake / President Merkin Muffley / Dr. Strangelove

Portions of the formatting string can be stripped conditionally:
if the specified condition is false, they will be cancelled.

E.g.:

myPrint = imdb.helpers.makeObject2Txt(personTxt='<if personID></if personID>%(long imdb name)s<if personID></if personID><if currentRole> ... %(currentRole)s<if notes> %(notes)s</if notes></if currentRole>'

Another useful argument is ‘applyToValues’: if set to a function, it will be
applied to every value before the substitution; it can be useful to format
strings for HTML output.

Series

As on the IMDb site, each TV series and also each of a TV series’ episodes is
treated as a regular title, just like a movie. The kind key can be used
to distinguish series and episodes from movies:

>>> series = ia.get_movie('0389564')
>>> series
<Movie id:0389564[http] title:_"The 4400" (2004)_>
>>> series['kind']
'tv series'
>>> episode = ia.get_movie('0502803')
>>> episode
<Movie id:0502803[http] title:_"The 4400" Pilot (2004)_>
>>> episode['kind']
'episode'

The episodes of a series can be fetched using the “episodes” infoset. This
infoset adds an episodes key which is a dictionary from season numbers
to episodes. And each season is a dictionary from episode numbers within
the season to the episodes. Note that the season and episode numbers don’t
start from 0; they are the numbers given by the IMDb:

>>> ia.update(series, 'episodes')
>>> sorted(series['episodes'].keys())
[1, 2, 3, 4]
>>> season4 = series['episodes'][4]
>>> len(season4)
13
>>> episode = series['episodes'][4][2]
>>> episode
<Movie id:1038701[http] title:_"The 4400" Fear Itself (2007)_>
>>> episode['season']
4
>>> episode['episode']
2

The title of the episode doesn’t contain the title of the series:

>>> episode['title']
'Fear Itself'
>>> episode['series title']
'The 4400'

The episode also contains a key that refers to the series, but beware that,
to avoid circular references, it’s not the same object as the series object
we started with:

>>> episode['episode of']
<Movie id:0389564[http] title:_"The 4400" (None)_>
>>> series
<Movie id:0389564[http] title:_"The 4400" (2004)_>

Titles

The analyze_title() and build_title() functions now support
TV episodes. You can pass a string to the analyze_title function
in the format used by the web server ("The Series" The Episode (2005))
or in the format of the plain text data files
("The Series" (2004) {The Episode (#ser.epi)}).

For example, if you call the function:

analyze_title('"The Series" The Episode (2005)')

the result will be:

{
 'kind': 'episode', # kind is set to 'episode'
 'year': '2005', # release year of this episode
 'title': 'The Episode', # episode title
 'episode of': { # 'episode of' will contain
 'kind': 'tv series', # information about the series
 'title': 'The Series'
 }
}

The episode of key can be a dictionary or a Movie instance
with the same information.

The build_title() function takes an optional argument: ptdf,
which when set to false (the default) returns the title of the episode
in the format used by the IMDb’s web server
(“The Series” An Episode (2006)); otherwise, it uses the format used
by the plain text data files (something like
“The Series” (2004) {An Episode (#2.5)})

Full credits

When retrieving credits for a TV series or mini-series, you may notice that
many long lists (like “cast” and “writers”) are incomplete. You can fetch
the complete list of cast and crew with the “full credits” data set:

>>> series = ia.get_movie('0285331')
>>> series
<Movie id:0285331[http] title:_"24" (2001)_>
>>> len(series['cast'])
50
>>> ia.update(series, 'full credits')
>>> len(series['cast'])
2514

Ratings

You can retrieve rating information about every episode in a TV series
or mini series using the ‘episodes rating’ data set.

People

You can retrieve information about single episodes acted/directed/…
by a person.

from imdb import Cinemagoer
i = Cinemagoer()
p = i.get_person('0005041') # Laura Innes
p['filmography']['actress'][0] # <Movie id:0568152[http] title:_"ER" (????)_>

At this point you have an entry (in keys like 'actor', 'actress',
'director', ...) for every series the person starred/worked in, but
you knows nothing about singles episodes.
i.update(p, 'episodes') # updates information about single episodes.

p['episodes'] # a dictionary with the format:
 # {<TV Series Movie Object>: [
 # <Episode Movie Object>,
 # <Episode Movie Object>,
 # ...
 #],
 # ...
 # }

er = p['actress'][0] # ER tv series
p['episodes'][er] # list of Movie objects; one for every ER episode
 # she starred/worked in

p['episodes'][er][0] # <Movie id:0568154[http] title:_"ER" Welcome Back Carter! (1995)_>
p['episodes'][er]['kind'] # 'episode'
p['episodes'][er][0].currentRole # 'Dr. Kerry Weaver'

Goodies

In the imdb.helpers module there are some functions useful to manage
lists of episodes:

	sortedSeasons(m) returns a sorted list of seasons of the given series, e.g.:

>>> from imdb import Cinemagoer
>>> i = Cinemagoer()
>>> m = i.get_movie('0411008')
>>> i.update(m, 'episodes')
>>> sortedSeasons(m)
[1, 2]

	sortedEpisodes(m, season=None) returns a sorted list of episodes of the
the given series for only the specified season(s) (if None, every season),
e.g.:

>>> from imdb import Cinemagoer
>>> i = Cinemagoer()
>>> m = i.get_movie('0411008')
>>> i.update(m, 'episodes')
>>> sortedEpisodes(m, season=1)
[<Movie id:0636289[http] title:_"Lost" Pilot: Part 1 (2004)_>, <Movie id:0636290[http] title:_"Lost" Pilot: Part 2 (2004)_>, ...]

Adult movies

Since version 6.8 you can use the search_movie_advanced(title, adult=None, results=None, sort=None, sort_dir=None) method to search for adult titles

>>> import imdb
>>> ia = imdb.Cinemagoer(accessSystem='http')
>>> movies = ia.search_movie_advanced('debby does dallas', adult=True)

Information in XML format

Since version 4.0, Cinemagoer can output information of Movie, Person, Character,
and Company instances in XML format. It’s possible to get a single information
(a key) in XML format, using the getAsXML(key) method (it will return None
if the key is not found). E.g.:

from imdb import Cinemagoer
ia = Cinemagoer('http')
movie = ia.get_movie(theMovieID)
print(movie.getAsXML('keywords'))

It’s also possible to get a representation of a whole object, using
the asXML() method:

print(movie.asXML())

The _with_add_keys argument of the asXML() method can be set
to False (default: True) to exclude the dynamically generated keys
(like ‘smart canonical title’ and so on).

XML format

Keywords are converted to tags, items in lists are enclosed in
a ‘item’ tag, e.g.:

<keywords>
 <item>a keyword</item>
 <item>another keyword</item>
</keywords>

Except when keys are known to be not fixed (e.g.: a list of keywords),
in which case this schema is used:

<item key="EscapedKeyword">
 ...
</item>

In general, the ‘key’ attribute is present whenever the used tag doesn’t match
the key name.

Movie, Person, Character and Company instances are converted as follows
(portions in square brackets are optional):

<movie id="movieID" access-system="accessSystem">
 <title>A Long IMDb Movie Title (YEAR)</title>
 [<current-role>
 <person id="personID" access-system="accessSystem">
 <name>Name Surname</name>
 [<notes>A Note About The Person</notes>]
 </person>
 </current-role>]
 [<notes>A Note About The Movie</notes>]
</movie>

Every ‘id’ can be empty.

The returned XML string is mostly not pretty-printed.

References

Some text keys can contain references to other movies, persons and characters.
The user can provide the defaultModFunct function (see
the “MOVIE TITLES AND PERSON/CHARACTER NAMES REFERENCES” section of
the README.package file), to replace these references with their own strings
(e.g.: a link to a web page); it’s up to the user, to be sure
that the output of the defaultModFunct function is valid XML.

DTD

Since version 4.1 a DTD is available; it can be found in this
directory or on the web, at: https://cinemagoer.github.io/static/dtd/cinemagoer.dtd

The version number changes with the Cinemagoer version.

Localization

Since version 4.1 it’s possible to translate the XML tags;
see README.locale.

Deserializing

Since version 4.6, you can dump the generated XML in a string or
in a file, using it -later- to rebuild the original object.
In the imdb.helpers module there’s the parseXML() function which
takes a string as input and returns -if possible- an instance of the Movie,
Person, Character or Company class.

Localization

Since version 4.1 the labels that describe the information are translatable.

Limitation

Internal messages or exceptions are not translatable,
the internationalization is limited to the “tags” returned by
the getAsXML and asXML methods of the Movie, Person, Character,
or Company classes.

Beware that in many cases these “tags” are not the same as the “keys” used
to access information in the same class. For example, you can translate
the tag “long-imdb-name” -the tag returned by the call
person.getAsXML('long imdb name'), but not the key “long imdb name”
itself. To translate keys, you can use
the helpers.translateKey function.

If you want to add i18n to your Cinemagoer-based application, all you need to do
is to switch to the imdbpy text domain:

>>> import os
>>> os.environ['LANG'] = 'it_IT'
>>> from imdb.locale import _
>>> _('art-department')
'Dipartimento artistico'

If you want to translate Cinemagoer into another language, see
the How to translate document for instructions.

Articles in titles

To convert a title to its canonical format as in “Title, The”, Cinemagoer makes
some assumptions about what is an article and what isn’t, and this can lead
to some wrong canonical titles. For example, it can canonicalize the title
“Die Hard” as “Hard, Die” because it guesses “Die” as an article (and it is,
in Germany…).

To solve this problem, there are other keys: “smart canonical title”,
“smart long imdb canonical title”, “smart canonical series title”,
“smart canonical episode title” which can be used to do a better job
converting a title into its canonical format.

This works, but it needs to know about articles in various languages:
if you want to help, see the linguistics.LANG_ARTICLES and
linguistics.LANG_COUNTRIES dictionaries.

To guess the language of a movie title, call its ‘guessLanguage’ method
(it will return None, if unable to guess).
If you want to force a given language instead of the guessed one, you
can call its ‘smartCanonicalTitle’ method, setting the ‘lang’ argument
appropriately.

Alternative titles

Sometimes it’s useful to manage a title’s alternatives (AKAs) knowing
their languages. In the ‘helpers’ module there are some (hopefully)
useful functions:

	akasLanguages(movie) - Given a movie, return a list of tuples
in (lang, AKA) format (lang can be None, if unable to detect).

	sortAKAsBySimilarity(movie, title) - Sort the AKAs on a movie considering
how much they are similar to a given title (see the code for more options).

	getAKAsInLanguage(movie, lang) - Return a list of AKAs of the movie
in the given language (see the code for more options).

Access systems

Cinemagoer supports different ways of accessing the IMDb data:

	Fetching data directly from the web server.

	Getting the data from a SQL database that can be created from
the downloadable data sets provided by the IMDb.

	access system

	aliases

	data source

	(default) ‘http’

	‘https’

‘web’

‘html’

	imdb.com web server

	‘s3’

	‘s3dataset’

	downloadable dataset

after Dec 2017

	‘sql’

	‘db’

‘database’

	downloadable dataset

until Dec 2017

Note

Since release 3.4, the imdbpy.cfg configuration file is available,
so that you can set a system-wide (or per-user) default. The file is
commented with indication of the location where it can be put,
and how to modify it.

If no imdbpy.cfg file is found (or is not readable or
it can’t be parsed), ‘http’ will be used the default.

See the S3 datasets and Old data files documents for more information about
SQL based access systems.

S3 datasets

IMDb distributes some of its data as downloadable datasets [https://www.imdb.com/interfaces/]. Cinemagoer can
import this data into a database and make it accessible through its API.
[1]

For this, you will first need to install SQLAlchemy [https://www.sqlalchemy.org/] and the libraries
that are needed for the database server you want to use. Check out
the SQLAlchemy dialects [http://docs.sqlalchemy.org/en/latest/dialects/] documentation for more detail.

Then, follow these steps:

	Download the files from the following address and put all of them
in the same directory: https://datasets.imdbws.com/

	Create a database. Use a collation like utf8_unicode_ci.

	Import the data using the s32cinemagoer.py script:

s32cinemagoer.py /path/to/the/tsv.gz/files/ URI

URI is the identifier used to access the SQL database. For example:

s32cinemagoer.py ~/Download/imdb-s3-dataset-2018-02-07/ \
 postgresql://user:password@localhost/imdb

Please notice that for some database engines (like MySQL and MariaDB) you may need
to specify the charset on the URI and sometimes also the dialect, with something like ‘mysql+mysqldb://username:password@localhost/imdb?charset=utf8’

Once the import is finished - which should take about an hour or less
on a modern system - you will have a SQL database with all the information
and you can use the normal Cinemagoer API:

from imdb import Cinemagoer

ia = Cinemagoer('s3', 'postgresql://user:password@localhost/imdb')

results = ia.search_movie('the matrix')
for result in results:
 print(result.movieID, result)

matrix = results[0]
ia.update(matrix)
print(matrix.keys())

Note

Running the script again will drop the current tables and import
the data again.

Note

Installing the tqdm [https://github.com/tqdm/tqdm] package, a progress bar is shown while the database
is populated and the –verbose argument is used.

[1]
Until the end of 2017, IMDb used to distribute a more comprehensive subset
of its data in a different format. Cinemagoer can also import that data
but note that the data is not being updated anymore. For more information,
see Old data files.

Old data files

Warning

Since the end of 2017, IMDb is no longer updating the data files which are
described in this document. For working with the updated
-but less comprehensive- downloadable data, check the S3 datasets document.

Until the end of 2017, IMDb used to distribute some of its data as downloadable
text files. Cinemagoer can import this data into a database and make it
accessible through its API.

For this, you will first need to install SQLAlchemy [https://www.sqlalchemy.org/] and the libraries
that are needed for the database server you want to use. Check out
the SQLAlchemy dialects [http://docs.sqlalchemy.org/en/latest/dialects/] documentation for more detail.

Then, follow these steps:

	Download the files from the following address and put all of them
in the same directory:
ftp://ftp.funet.fi/pub/mirrors/ftp.imdb.com/pub/frozendata/

You can just download the files you need instead of downloading all files.
The files that are not downloaded will be skipped during import.
This feature is still quite untested, so please report any bugs.

Warning

Beware that the diffs subdirectory contains
a lot of files you don’t need, so don’t start mirroring
everything!

	Create a database. Use a collation like utf8_unicode_ci.

	Import the data using the imdbpy2sql.py script:

imdbpy2sql.py -d /path/to/the/data_files_dir/ -u URI

URI is the identifier used to access the SQL database. For example:

imdbpy2sql.py -d ~/Download/imdb-frozendata/ \
 -u postgres://user:password@localhost/imdb

Once the import is finished, you will have a SQL database with all
the information and you can use the normal Cinemagoer API:

from imdb import Cinemagoer

ia = Cinemagoer('sql', uri='postgres://user:password@localhost/imdb')

results = ia.search_movie('the matrix')
for result in results:
 print(result.movieID, result)

matrix = results[0]
ia.update(matrix)
print(matrix.keys())

Note

It should be noted that the imdbpy2sql.py script will not create
any foreign keys, but only indexes. If you need foreign keys, try using
the version in the “imdbpy-legacy” branch.

If you need instructions on how to manually build the foreign keys,
see this comment by Andrew D Bate [https://github.com/alberanid/imdbpy/issues/130#issuecomment-365707620].

Performance

The import performance hugely depends on the underlying module used to access
the database. The imdbpy2sql.py script has a number of command line
arguments for choosing presets that can improve performance in specific
database servers.

The fastest database appears to be MySQL, with about 200 minutes to complete
on my test system (read below). A lot of memory (RAM or swap space)
is required, in the range of at least 250/500 megabytes (plus more
for the database server). In the end, the database requires between
2.5GB and 5GB of disk space.

As said, the performance varies greatly using one database server or another.
MySQL, for instance, has an executemany() method of the cursor object
that accepts multiple data insertion with a single SQL statement; other
databases require a call to the execute() method for every single row
of data, and they will be much slower -2 to 7 times slower than MySQL.

There are generic suggestions that can lead to better performance, such as
turning off your filesystem journaling (so it can be a good idea to remount
an ext3 filesystem as ext2 for example). Another option is using
a ramdisk/tmpfs, if you have enough RAM. Obviously these have effect only at
insert-time; during day-to-day use, you can turn journaling on again.
You can also consider using CSV output as explained below, if your database
server can import CSV files.

I’ve done some tests, using an AMD Athlon 1800+, 1GB of RAM, over a complete
plain text data files set (as of 11 Apr 2008, with more than 1.200.000 titles
and over 2.200.000 names):

	database

	time in minutes: total (insert data/create indexes)

	MySQL 5.0 MyISAM

	205 (160/45)

	MySQL 5.0 InnoDB

	untested, see NOTES below

	PostgreSQL 8.1

	560 (530/30)

	SQLite 3.3

	??? (150/???) -very slow building indexes

Timed with the “–sqlite-transactions” command

line option; otherwise it’s _really_ slow:

even 35 hours or more

	SQLite 3.7

	65/13 - with –sqlite-transactions
and using an SSD disk

	SQL Server

	about 3 or 4 hours

If you have different experiences, please tell me!

As expected, the most important things that you can do to improve performance
are:

	Use an in-memory filesystem or an SSD disk.

	Use the -c /path/to/empty/dir argument to use CSV files.

	Follow the specific notes about your database server.

Notes

[save the output]

The imdbpy2sql.py will print a lot of debug information on standard output;
you can save it in a file, appending (without quotes) “2>&1 | tee output.txt”

[Microsoft Windows paths]

It’s much safer, in a Microsoft Windows environment, to use full paths
for the values of the ‘-c’ and ‘-d’ arguments, complete with drive letter.
The best thing is to use _UNIX_ path separator, and to add a leading
separator, e.g.:

-d C:/path/to/imdb_files/ -c C:/path/to/csv_tmp_files/

[MySQL]

In general, if you get an annoyingly high number of “TOO MANY DATA
… SPLITTING” lines, consider increasing max_allowed_packet
(in the configuration of your MySQL server) to at least 8M or 16M.
Otherwise, inserting the data will be very slow, and some data may
be lost.

[MySQL InnoDB and MyISAM]

InnoDB is abysmal slow for our purposes: my suggestion is to always use
MyISAM tables and -if you really want to use InnoDB- convert the tables
later. The imdbpy2sql.py script provides a simple way to manage these cases,
see ADVANCED FEATURES below.

In my opinion, the cleaner thing to do is to set the server to use
MyISAM tables or -if you can’t modify the server-
use the --mysql-force-myisam command line option of imdbpy2sql.py.
Anyway, if you really need to use InnoDB, in the server-side settings
I recommend to set innodb_file_per_table to “true”.

Beware that the conversion will be extremely slow (some hours), but still
faster than using InnoDB from the start. You can use the “–mysql-innodb”
command line option to force the creation of a database with MyISAM tables,
converted at the end into InnoDB.

[Microsoft SQL Server/SQLExpress]

If you get and error about how wrong and against nature the blasphemous act
of inserting an identity key is, you can try to fix it with the new custom
queries support; see ADVANCED FEATURES below.

As a shortcut, you can use the “–ms-sqlserver” command line option
to set all the needed options.

[SQLite speed-up]

For some reason, SQLite is really slow, except when used with transactions;
you can use the “–sqlite-transactions” command line option to obtain
acceptable performance. The same command also turns off “PRAGMA synchronous”.

SQLite seems to hugely benefit from the use of a non-journaling filesystem
and/or of a ramdisk/tmpfs: see the generic suggestions discussed above
in the Timing section.

[SQLite failure]

It seems that with older versions of the python-sqlite package, the first run
may fail; if you get a DatabaseError exception saying “no such table”,
try running again the command with the same arguments. Double funny, huh? ;-)

[data truncated]

If you get an insane amount (hundreds or thousands, on various text columns)
of warnings like these:

imdbpy2sql.py:727: Warning: Data truncated for column ‘person_role’ at row 4979
CURS.executemany(self.sqlString, self.converter(self.values()))

you probably have a problem with the configuration of your database.
The error comes from strings that get cut at the first non-ASCII character
(and so you’re losing a lot of information).

To solves this problem, you must be sure that your database server is set up
properly, with the use library/client configured to communicate with the server
in a consistent way. For example, for MySQL you can set:

character-set-server = utf8
default-collation = utf8_unicode_ci
default-character-set = utf8

or even:

character-set-server = latin1
default-collation = latin1_bin
default-character-set = latin1

[adult titles]

Beware that, while running, the imdbpy2sql.py script will output
a lot of strings containing both person names and movie titles. The script
has absolutely no way of knowing that the processed title is an adult-only
movie, so… if you leave it on and your little daughter runs to you
screaming “daddy! daddy! what kind of animals does Rocco train in the
documentary ‘Rocco: Animal Trainer 17’???”… well, it’s not my fault! ;-)

Advanced features

With the -e (or –execute) command line argument you can specify
custom queries to be executed at certain times, with the syntax:

-e "TIME:[OPTIONAL_MODIFIER:]QUERY"

where TIME is one of: ‘BEGIN’, ‘BEFORE_DROP’, ‘BEFORE_CREATE’,
‘AFTER_CREATE’, ‘BEFORE_MOVIES’, ‘BEFORE_CAST’, ‘BEFORE_RESTORE’,
‘BEFORE_INDEXES’, ‘END’.

The only available OPTIONAL_MODIFIER is ‘FOR_EVERY_TABLE’ and it means
that the QUERY command will be executed for every table in the database
(so it doesn’t make much sense to use it with BEGIN, BEFORE_DROP
or BEFORE_CREATE time…), replacing the “%(table)s” text in the QUERY
with the appropriate table name.

Other available TIMEs are: ‘BEFORE_MOVIES_TODB’, ‘AFTER_MOVIES_TODB’,
‘BEFORE_PERSONS_TODB’, ‘AFTER_PERSONS_TODB’, ‘BEFORE_CHARACTERS_TODB’,
‘AFTER_CHARACTERS_TODB’, ‘BEFORE_SQLDATA_TODB’, ‘AFTER_SQLDATA_TODB’,
‘BEFORE_AKAMOVIES_TODB’ and ‘AFTER_AKAMOVIES_TODB’; they take no modifiers.
Special TIMEs ‘BEFORE_EVERY_TODB’ and ‘AFTER_EVERY_TODB’ apply to
every BEFORE_* and AFTER_* TIME above mentioned.

These commands are executed before and after every _toDB() call in
their respective objects (CACHE_MID, CACHE_PID and SQLData instances);
the “%(table)s” text in the QUERY is replaced as above.

You can specify so many -e arguments as you need, even if they refer
to the same TIME: they will be executed from the first to the last.
Also, always remember to correctly escape queries: after all you’re
passing it on the command line!

E.g. (ok, quite a silly example…):

-e "AFTER_CREATE:SELECT * FROM title;"

The most useful case is when you want to convert the tables of a MySQL
from MyISAM to InnoDB:

-e "END:FOR_EVERY_TABLE:ALTER TABLE %(table)s ENGINE=InnoDB;"

If your system uses InnoDB by default, you can trick it with:

-e "AFTER_CREATE:FOR_EVERY_TABLE:ALTER TABLE %(table)s ENGINE=MyISAM;" -e "END:FOR_EVERY_TABLE:ALTER TABLE %(table)s ENGINE=InnoDB;"

You can use the “–mysql-innodb” command line option as a shortcut
of the above command.

Cool, huh?

Another possible use is to fix a problem with Microsoft SQLServer/SQLExpress.
To prevent errors setting IDENTITY fields, you can run something like this:

-e 'BEFORE_EVERY_TODB:SET IDENTITY_INSERT %(table)s ON' -e 'AFTER_EVERY_TODB:SET IDENTITY_INSERT %(table)s OFF'

You can use the “–ms-sqlserver” command line option as a shortcut
of the above command.

To use transactions to speed-up SQLite, try:

-e 'BEFORE_EVERY_TODB:BEGIN TRANSACTION;' -e 'AFTER_EVERY_TODB:COMMIT;'

Which is also the same thing the command line option “–sqlite-transactions”
does.

CSV files

Note

Keep in mind that not all database servers support this.

Moreover, you can run into problems. For example, if you’re using
PostgreSQL, your server process will need read access to the directory
where the CSV files are stored.

To create the database using a set of CSV files, run imdbpy2sql.py
as follows:

imdbpy2sql.py -d /dir/with/plainTextDataFiles/ -u URI \
 -c /path/to/the/csv_files_dir/

The created CSV files will be imported near the end of processing. After the import
is finished, you can safely remove these files.

Since version 4.5, it’s possible to separate the two steps involved
when using CSV files:

	With the --csv-only-write command line option, the old database will be
truncated and the CSV files saved, along with imdbID information.

	With the --csv-only-load option, these saved files can be loaded
into an existing database (this database MUST be the one left almost empty
by the previous run).

Beware that right now the whole procedure is not very well tested.
For both commands, you still have to specify the whole
-u URI -d /path/plainTextDataFiles/ -c /path/CSVfiles/ arguments.

Development

If you intend to do development on the Cinemagoer package, it’s recommended
that you create a virtual environment for it. For example:

python -m venv ~/.virtualenvs/cinemagoer
. ~/.virtualenvs/cinemagoer/bin/activate

In the virtual environment, install Cinemagoer in editable mode and include
the extra packages. In the top level directory of the project (where
the setup.py file resides), run:

pip install -e .[dev,doc]

I wanted to stay independent from the source of the data for a given
movie/person, so the imdb.IMDb() function returns
an instance of a class that provides specific methods to access a given
data source (web server, SQL database, etc.).

Unfortunately this means that the movieID
in the Movie class and the personID
in the Person class depend on
the data access system being used. So, when a movie or person
object is instantiated, the accessSystem instance variable is set
to a string used to identify the used data access system.

Contents:

	How to extend

	How to test
	make

	tox

	S3 dataset

	How to translate

	How to make a release

How to extend

To introduce a new data access system, you have to write a new package
inside the “parser” package; this new package must provide a subclass
of the imdb.IMDbBase class which must define at least the following methods:

	_search_movie(title)
	To search for a given title; must return a list of (movieID, {movieData})
tuples.

	_search_episode(title)
	To search for a given episode title; must return a list of
(movieID, {movieData}) tuples.

	_search_person(name)
	To search for a given name; must return a list of (movieID, {personData})
tuples.

	_search_character(name)
	To search for a given character’s name; must return a list of
(characterID, {characterData}) tuples.

	_search_company(name)
	To search for a given company’s name; must return a list of
(companyID, {companyData}) tuples.

	get_movie_*(movieID)
	A set of methods, one for every set of information defined for a Movie
object; should return a dictionary with the relative information.

This dictionary can contain some optional keys:

	‘data’: must be a dictionary with the movie info

	‘titlesRefs’: a dictionary of ‘movie title’: movieObj pairs

	‘namesRefs’: a dictionary of ‘person name’: personObj pairs

	get_person_*(personID)
	A set of methods, one for every set of information defined for a Person
object; should return a dictionary with the relative information.

	get_character_*(characterID)
	A set of methods, one for every set of information defined for a Character
object; should return a dictionary with the relative information.

	get_company_*(companyID)
	A set of methods, one for every set of information defined for a Company
object; should return a dictionary with the relative information.

	_get_top_bottom_movies(kind)
	Kind can be one of ‘top’ and ‘bottom’; returns the related list of movies.

	_get_keyword(keyword)
	Return a list of Movie objects with the given keyword.

	_search_keyword(key)
	Return a list of keywords similar to the given key.

	get_imdbMovieID(movieID)
	Convert the given movieID to a string representing the imdbID, as used
by the IMDb web server (e.g.: ‘0094226’ for Brian De Palma’s
“The Untouchables”).

	get_imdbPersonID(personID)
	Convert the given personID to a string representing the imdbID, as used
by the IMDb web server (e.g.: ‘0000154’ for “Mel Gibson”).

	get_imdbCharacterID(characterID)
	Convert the given characterID to a string representing the imdbID, as used
by the IMDb web server (e.g.: ‘0000001’ for “Jesse James”).

	get_imdbCompanyID(companyID)
	Convert the given companyID to a string representing the imdbID, as used
by the IMDb web server (e.g.: ‘0071509’ for “Columbia Pictures [us]”).

	_normalize_movieID(movieID)
	Convert the provided movieID in a format suitable for internal use
(e.g.: convert a string to a long int).

NOTE: As a rule of thumb you always need to provide a way to convert
a “string representation of the movieID” into the internally used format,
and the internally used format should always be converted to a string,
in a way or another. Rationale: A movieID can be passed from the command
line, or from a web browser.

	_normalize_personID(personID)
	idem

	_normalize_characterID(characterID)
	idem

	_normalize_companyID(companyID)
	idem

	_get_real_movieID(movieID)
	Return the true movieID; useful to handle title aliases.

	_get_real_personID(personID)
	idem

	_get_real_characterID(characterID)
	idem

	_get_real_companyID(companyID)
	idem

The class should raise the appropriate exceptions, when needed:

	IMDbDataAccessError must be raised when you cannot access the resource
you need to retrieve movie info or you’re unable to do a query (this is
not the case when a query returns zero matches: in this situation an
empty list must be returned).

	IMDbParserError should be raised when an error occurred parsing
some data.

Now you’ve to modify the imdb.IMDb function so that, when the right
data access system is selected with the “accessSystem” parameter, an instance
of your newly created class is returned.

For example, if you want to call your new data access system “mysql”
(meaning that the data are stored in a mysql database), you have to add
to the imdb.IMDb function something like:

if accessSystem == 'mysql':
 from parser.mysql import IMDbMysqlAccessSystem
 return IMDbMysqlAccessSystem(*arguments, **keywords)

where “parser.mysql” is the package you’ve created to access the local
installation, and “IMDbMysqlAccessSystem” is the subclass of imdb.IMDbBase.

Then it’s possible to use the new data access system like:

from imdb import Cinemagoer
i = Cinemagoer(accessSystem='mysql')
results = i.search_movie('the matrix')
print(results)

Note

This is a somewhat misleading example: we already have a data access system
for SQL database (it’s called ‘sql’ and it supports MySQL, amongst others).
Maybe I’ll find a better example…

A specific data access system implementation can define its own methods.
As an example, the IMDbHTTPAccessSystem that is in the parser.http package
defines the method set_proxy() to manage the use a web proxy; you can use
it this way:

from imdb import Cinemagoer
i = Cinemagoer(accessSystem='http') # the 'accessSystem' argument is not
 # really needed, since "http" is the default.
i.set_proxy('http://localhost:8080/')

A list of special methods provided by the imdb.IMDbBase subclass, along with
their description, is always available calling the get_special_methods()
of the IMDb instance object:

i = Cinemagoer(accessSystem='http')
print(i.get_special_methods())

will print a dictionary with the format:

{'method_name': 'method_description', ...}

How to test

Cinemagoer has a test suite based on pytest [https://pytest.org/]. The simplest way to run the tests
is to run the following command in the top level directory of the project:

pytest

You can execute a specific test module:

pytest tests/test_http_movie_combined.py

Or execute test functions that match a given keyword:

pytest -k cover

make

A Makefile is provided for easier invocation of jobs.
The following targets are defined (among others, run “make” to see
the full list):

	test
	Run tests quickly with the default Python.

	lint
	Check style with flake8.

	docs
	Generate Sphinx HTML documentation, including API docs.

	coverage
	Check code coverage quickly with the default Python.

	clean
	Clean everything.

tox

Multiple test environments can be tested using tox:

tox

This will test all the environments listed in the tox.ini file.
If you want to run all tests for a specific environment, for example python 3.4,
supply it as an argument to tox:

tox -e py34

You can supply commands that will be executed in the given environment.
For example, to run the test function that have the string “cover” in them
using pypy3, execute:

tox -e pypy3 -- pytest -k cover

Or to get a Python prompt under Python 3.5 (with Cinemagoer and all dependencies
already installed), execute:

tox -e py35 -- python

S3 dataset

The tests will use the HTTP access system by default. If you would also like
to test the database generated from the S3 dataset, define the CINEMAGOER_S3_URI
environment variable:

CINEMAGOER_S3_URI='postgres://imdb@localhost/imdb' pytest

This will run the tests for both HTTP and S3 access systems.

How to translate

Note

You can (but you don’t have to) use Transifex to manage/coordinate
your translations: http://www.transifex.net/projects/p/imdbpy/

The imdb.locale package contains some scripts that are useful
for building your own internationalization files:

	The generatepot.py script should be used only when the DTD
is changed; it’s used to create the imdbpy.pot file
(the one that gets shipped is always up-to-date).

	You can copy the imdbpy.pot file as your language’s .po file
(for example imdbpy-fr.po for French) and modify it according
to your language.

	Then you have to run the rebuildmo.py script (which is automatically
executed at install time) to create the .mo files.

If you need to upgrade an existing translation, after changes to the .pot
file (usually because the DTD was changed), you can use the msgmerge
utility which is part of the GNU gettext suite:

msgmerge -N imdbpy-fr.po imdbpy.pot > new-imdbpy-fr.po

If you create a new translation or update an existing one, you can send
it to the <imdbpy-devel@lists.sourceforge.net> mailing list, for inclusion
in upcoming releases.

How to make a release

During development

imdb.version

Be sure that the __version__ variable is up-to-date.

CHANGELOG.txt

When a major fix or feature is committed, the changelog must be updated.

When a new release is planned

CHANGELOG.txt

The date of the release has to be added.

How to release

	Commit the above changes.

	Add an annotated tag like year.month.day; e.g.: git tag -a 2020.09.25
(the commit message is not important).

	python3 setup.py sdist

	python3 setup.py bdist_wheel

	git push

	git push --tags

	Don’t forget to push both sources and tags to both the GitHub and Bitbucket
repositories (they are kept in sync).

	Upload to pypi: twine upload dist/cinemagoer-* (you probably need a recent
version of twine and the appropriate ~/.pypi file)

	The new tar.gz must also be uploaded
to https://sourceforge.net/projects/imdbpy/ (along with a new “news”).

	Create a new release on GitHub, including the changelog and the whl and tar.gz files.
https://github.com/cinemagoer/cinemagoer/releases/new

communication

	update the content/news section of https://github.com/cinemagoer/website

	add a news on https://sourceforge.net/p/imdbpy/news/new

	send an email to imdbpy-devel@lists.sourceforge.net and imdbpy-help@lists.sourceforge.net

After the release

CHANGELOG.txt

Add a new section for the next release, on top.

After that, you can commit the above changes with a message like “version bump”

FAQs

	Q:

	Is Cinemagoer compatible with Python 3?

	A:

	Yes. Versions after 6.0 are compatible with Python 3.x, but should
also work with Python 2.7.
If you need an older, unmaintained, version for Python, see the
imdbpy-legacy branch in the repository.

	Q:

	Importing the data using the ‘s3’ method, are the imdbID available?

	A:

	Yes! The data from https://datasets.imdbws.com/ contains the original IDs.

	Q:

	Importing the data using the old ‘sql’ method, are the imdbID available?

	A:

	No. The old ‘sql’ method generates sequential imdbIDs that are unrelated to the ones used by the web site.

	Q:

	I have an URL (of a movie, person or something else), how can I
get a Movie/Person/… instance?

	A:

	Import the imdb.helpers module and use the get_byURL function.

	Q:

	I’m writing an interface based on Cinemagoer and I have problems handling
encoding, chars conversions, replacements of references and so on.

	A:

	See the many functions in the imdb.helpers module.

	Q:

	How can I get a link to an image (movie cover or people headshot) with a specific size?

	A:

	You can use the imdb.helpers.resizeImage function to get a link to a resized and/or cropped version of the image.

Contributors

People who contributed a substantial amount of work and share the copyright
over some portions of the code:

Davide Alberani <da –> mimante.net>

Main author and project leader.

H. Turgut Uyar <uyar –> tekir.org>

The whole “http” data access system (using a DOM and XPath-based
approach) is based on his work. The imdbpykit interface was mostly written
by him and he holds the copyright over the whole code (with some portions
shared with others). He provided the tox testsuite.

Giuseppe “Cowo” Corbelli <cowo –> lugbs.linux.it>

Provided a lot of code and hints to integrate Cinemagoer with SQLObject,
working on the imdbpy2sql.py script and the dbschema.py module.

Beside Turgut, Giuseppe and me, the following people are listed as developers
for the Cinemagoer project on sourceforge and may share copyright on some (minor)
portions of the code:

Alberto Malagoli

Developed the new web site, and detains the copyright of it,
and provided helper functions and other code.

Martin Kirst <martin.kirst –> s1998.tu-chemnitz.de>

Has done an important refactoring of the imdbpyweb program
and shares with me the copyright on the whole program.

Jesper Nøhr <jesper –> noehr.org>

Provided extensive testing and some patches for the “http”
data access system.

Joachim Selke <j.selke –> tu-bs.de>

Many tests on IBM DB2 and work on the CSV support.

Timo Schulz <gnuknight –> users.sourceforge.net>

Did a lot of work “sql”, DB2 and CSV support and extensive analysis
aimed at diff files support.

Roy Stead <roystead247 –> gmail.com>

Provided the download_applydiffs.py script.

Additional translations were provided by:

	strel (Spanish)

	Stéphane Aulery (French)

	RainDropR (Arabic)

	Atanas Kovachki (Bulgarian)

	lukophron (French)

	Raphael (German)

	Henrique Lauro Bagio de Souza (Portuguese)

	Alexa Ognjanovic (Serbian)

Credits
First of all, I want to thank all the package maintainers, and especially
Ana Guerrero. Another big thanks to the developers who used Cinemagoer
for their projects and research; they can be found here:
https://cinemagoer.github.io/ecosystem/

Other very special thanks go to some people who followed the development
of Cinemagoer very closely, providing hints and insights: Ori Cohen, James Rubino,
Tero Saarni, and Jesper Noer (for a lot of help, and also for the wonderful
https://bitbucket.org/); and let’s not forget all the translators
on https://www.transifex.com/davide_alberani/imdbpy/

The list of people contributing to Cinemagoer is getting too long, so
starting from 20221222 we no longer add people to the list; see https://github.com/cinemagoer/cinemagoer/graphs/contributors
for a complete list of contributors.

We’d like to thank the following people for their donations:

	Paulina Wadecka

	Oleg Peil

	Diego Sarmentero

	Fabian Winter

	Lacroix Scott

Change log

	What’s new in the next release

	What’s new in release 2023.05.01 (1922)

[http]

	#424: parse the “fullcredits” page for persons (courtesy of DLu)

	#443: fix parser for plot summary (courtesy of Saleh Dehqanpour)

	#448: always transform ratings to float

	various other parsers fixed

	What’s new in release 2022.12.27 (Turist)

[http]

	#419: more fixes for movie searches

	#426: support 308 Permanent Redirect HTTP code

	better handling of locales

	fixes for python2.7

	What’s new in release 2022.12.04 (John Wick)

[http]

	#232: add get_showtimes() method (courtesy of Kostya Farber)

	#388: add ‘videos’ key to extract movie trailer links

	#391: add parental guide advisory votes (courtesy of salehdeh76)

	#395: fix for some wrongly-formatted titles (courtesy of tsaklidis)

	#396: raise exception on resize image (courtesy of tsaklidis)

	#398: fix for production status

	#415: change User-Agent to a more complete form

	#419: fix movie and person searches

	#420: introduce a contributor guide (courtesy of Elizabeth Thorne)

	#421: fixes for person parsers

	What’s new in release 2022.02.11 (the Cinemagoer Strikes Back release)

[http]

	#373: include TV shows in get top 50 by genre

	#378: update documentation

[s3]

	#378: rename s32imdbpy.py to s32cinemagoer.py

	What’s new in release 2022.01.25 (the Cinemagoer release)

[general]

	#238: by default, exceptions are raised

	#315: include all script in the ./bin directory

	#318: fix kind of tv mini series in search results

	#369: do not rebuild locales running setup.py clean

	#371: support for 8-digit imdbIDs

	#378: renamed to cinemagoer

[http]

	#308: fix movie connections parser

	#319: parse review rating

	#327: do not strip new lines

	#329: improve localized and original title

	#330: fix for tv series for seasons not found

	#331: fix kind of tv mini series in search results

	#342: parse all information from full credits

	#343: fix for mpaa and certificates from parental guide page

	#344: extract advisories from parental guide page

	#346: collect raw info from country code

	#348: fix for series with no episodes

	#349: relevant keywords

	#357: add support for TV Special

	#366: fix full-size image links

	#372: support fox box office charts

	What’s new in release 2021.04.18 (Black Sails)

[general]

	#289: Serbian translations

	#290: update Portuguese translations

	#291: allow direct access to filmography keys

	#299: add pagination to get_movie_list (courtesy of Stein van Broekhoven)

	#300: any iterable can be used as season_nums parameter of update_series_seasons

	#305: fix ability to set logging level

	#310: fix build of locales .mo files

	#312: extract localized title

[sql]

	#287: fix missing logger

	What’s new in release 2020.09.25 (The Umbrella Academy)

[general]

	#112: switch to a calendar versioning scheme

	#242: introduce the “imdbID” key with the actual imdbID for movies and persons

	#247: use html escape

	#257: fix exception formatting string (courtesy of miigotu)

	#262: remove obsolete Feature key from setup.py

	#265: imdb.helpers.resizeImage function to manipulate image URLs

	#267: update regex to support imdbIndex without a year

	#275: update che path for Creator

	#284: use derived loggers (courtesy of jsynowiec)

	#282: use correct escape sequence for regular expressions (courtesy of Karthikeyan Singaravelan)

[http]

	#134: fix movie awards parser

	#228: fix goofs parser

	#229: introduce the “original title” key

	#230: get_keyword method is now paginated

	#234: parse person awards (thanks to Volkan Yalcin)

	#237: fix quotes parser

	#241: introduce recommendations parser

	#244: fix parser for persons filmography

	#245: ability to fetch information about a single season

	#260: parsers for top rated tv show, top rated indian movies, most popular tv shows and movies

	#273: ability to parse movie lists (courtesy of Stein van Broekhoven)

[sql]

	#270: introduce a progress bar importing s3 dataset (courtesy of Sam Grayson)

	#278: fix access to s3 tables

	What’s new in release 6.8 “Apollo 11” (20 Jul 2019)

[http]

	#224: introduce the search_movie_advanced(title, adult=None, results=None, sort=None, sort_dir=None) method

	#145: names are stored in normal format (Name Surname)

	#225: remove obsolete cookie

	#182: box office information

	#168: parse series and episode number searching for movies

	#217: grab poster from search

	#218: extract MPAA rating

	#220: extract actor headshot from full credits

	What’s new in release 6.7 “Game of Thrones” (19 May 2019)

[general]

	#180: include tests in source package

	#188: avoid missing keys in search results

[http]

	#144: fix parser for currentRole and notes

	#189: use HTTPS insted of HTTP

	#192: fix list of AKAs and release dates

	#200: fix keywords parser

	#201: fix encoding doing searches

	#210: fix TV series episode rating and votes

[sql]

	#176: correctly handle multiple characters

[s3]

	#163 and #193: fix import in MySQL

	#193: handle the new format of title.principals.tsv.gz

	#195: show progress, importing data (with –verbose)

	What’s new in release 6.6 “Stranger Things” (05 Aug 2018)

[general]

	#154: exclude docs and etc directories from packaging

	introduce ‘https’ as an alias for ‘http’

	#151: the ‘in’ operator also considers key names

	#172: fix for ASCII keys in XML output

	#174: improve XML output

	#179: introduce Travis CI at https://travis-ci.org/alberanid/imdbpy

[http]

	#149: store person birth and death dates in ISO8601 format

	#166: fix birth and death dates without itemprop attributes

	#160: fix series seasons list

	#155 and #165: ignore certificate to prevent validation errors

	#156: fix tech parser

	#157: full-size headshot for persons

	#161: fix string/unicode conversion in Python 2.7

	#173: raw akas and raw release dates fields

	#178: fix mini biography parser

[s3]

	#158: fetch and search AKAs

	update the goodies/download-from-s3 script to use the datasets.imdbws.com site

	What’s new in release 6.5 “Poultrygeist: Night of the Chicken Dead” (15 Apr 2018)

[general]

	converted the documentation to Sphinx rst format

[http]

	fix title parser for in-production movies

	parsers are based on piculet

	improve collection of full-size cover images

	What’s new in release 6.4 “Electric Dreams” (14 Mar 2018)

[http]

	remove obsolete parsers

	remove Character objects

	fix for search parsers

	What’s new in release 6.3 “Altered Carbon” (27 Feb 2018)

[general]

	documentation updates

	introduced the ‘imdbpy’ CLI

	s3 accessSystem to access the new dataset from IMDb

[http]

	fixes for IMDb site redesign

	Person parser fixes

	users review parser

	improve external sites parser

	switch from akas.imdb.com domain to www.imdb.com

	fix for synopsis

	fix for tv series episodes

[s3]

	ability to import and access all the information

	What’s new in release 6.2 “Justice League” (19 Nov 2017)

[general]

	introduce check for Python version

	SQLAlchemy can be disabled using –without-sqlalchemy

	fix #88: configuration file parser

	update documentation

[http]

	fixed ratings parser

	moved cookies from json to Python source

	What’s new in release 6.1

	skipped version 6.1 due to a wrong release on pypi

	What’s new in release 6.0 “Life is Strange” (12 Nov 2017)

[general]

	now IMDbPY is a Python 3 package

	simplified the code base: #61

	remove dependencies: SQLObject, BeautifulSoup, C compiler

	introduced a tox testsuite

	fix various parsers

	What’s new in release 5.1 “Westworld” (13 Nov 2016)

[general]

	fix for company names containing square brackets.

	fix XML output when imdb long name is missing.

	fixes #33: unable to use –without-sql

[http]

	fix birth/death dates parsing.

	fix top/bottom lists.

	Persons’s resume page parser (courtesy of codynhat)

	fixes #29: split color info

	parser for “my rating” (you have to use your own cookies)

[sql]

	sound track list correctly identified.

	fixes #50: process splitted data in order

	fixes #53: parser for movie-links

	What’s new in release 5.0 “House of Cards” (02 May 2014)

[general]

	Spanish, French, Arabic, Bulgarian and German translations.

	Introduced the list of French articles.

	fix for GAE.

	download_applydiffs.py script.

	fixed wrong handling of encoding in episode titles

	renamed README.utf8 to README.unicode

[http]

	fixed searches (again).

	search results are always in English.

	updated the cookies.

	support for obtaining metacritic score and URL.

	fixed goofs parser.

	fixed url for top250.

	fixes for biography page.

	fix for quotes.

	better charset identification.

	category and spoiler status for goofs.

	changed query separators from ; to &.

	fix for episodes of unknown seasons.

	new cookie.

[mobile]

	fixed searches.

[sql]

	fix for MSSQL

	What’s new in release 4.9 “Iron Sky” (15 Jun 2012)

[general]

	urls used to access the IMDb site can be configured.

	helpers function to handle movie AKAs in various
languages (code by Alberto Malagoli).

	renamed the ‘articles’ module into ‘linguistics’.

	introduced the ‘reraiseExceptions’ option, to re-raise
evey caught exception.

[http]

	fix for changed search parameters.

	introduced a ‘timeout’ parameter for connections to the web server.

	fix for business information.

	parser for the new style of episodes list.

	unicode searches handled as iso8859-1.

	fix for garbage in AKA titles.

[sql]

	vastly improved the store/restore of imdbIDs; now it should be faster
and more accurate.

	now the ‘name’ table contains a ‘gender’ field that can be ‘m’, ‘f’ or NULL.

	fix for nicknames.

	fix for missing titles in the crazy credits file.

	handled exceptions creating indexes, foreign keys and
executing custom queries.

	fixed creation on index for keywords.

	excluded {{SUSPENDED}} titles.

	What’s new in release 4.8.2 “The Big Bang Theory” (02 Nov 2011)

[general]

	fixed install path of locales.

[http]

	removed debug code.

	What’s new in release 4.8 “Super” (01 Nov 2011)

[general]

	fix for a problem managing exceptions with Python 2.4.

	converted old-style exceptions to instances.

	enanchements for the reduce.sh script.

	added notes about problems connecting to IMDb’s web servers.

	improvements in the parsers of movie titles.

	improvements in the parser of person names.

[http]

	potential fix for GAE environment.

	handled the new style of “in production” information.

	fix for ‘episodes’ list.

	fix for ‘episodes rating’.

	fix for queries that returned too many results.

	fix for wrong/missing references.

	removed no more available information set “amazon
reviews” and “dvd”.

	fix for cast of tv series.

	fix for title of tv series.

	now the beautiful parses work again.

[httpThin]

	removed “httpThin”, falling back to “http”.

[mobile]

	fix for missing headshots.

	fix for rating and number of votes.

	fix for missing genres.

	many other fixes to keep up-to-date with the IMDb site.

[sql]

	fix for a nasty bug parsing notes about character names.

	fixes for SQLite with SQLOjbect.

	What’s new in release 4.7 “Saw VI” (23 Jan 2011)

[http]

	first fixes for the new set of parsers.

	first changes to support the new set of web pages.

	fix for lists of uncategorized episodes.

	fix for movies with multiple countries.

	fix for the currentRole property.

	more robust handling for vote details.

[mobile]

	first fixes for the new set of parsers.

[sql]

	the tables containing titles and names (and akas) now
include a ‘md5sum’ column calculated on the “long imdb canonical title/name”.

	What’s new in release 4.6 “The Road” (19 Jun 2010)

[general]

	introduced the ‘full-size cover url’ and ‘full-size headshot’
keys for Movie, Person and Character instances.

	moved the development to a Mercurial repository.

	introduced the parseXML function in the imdb.helpers module.

	now the asXML method can exclude dynamically generated keys.

	rationalized the use of the ‘logging’ and ‘warnings’ modules.

	the ‘update’ method no longer raises an exception, if asked for
an unknown info set.

[http/mobile]

	removed new garbage from the imdb pages.

	support new style of akas.

	fix for the “trivia” page.

	fixes for searches with too many results.

[sql]

	fixes for garbage in the plain text data files.

	support for SQLite shipped with Python 2.6.

	What’s new in release 4.5.1 “Dollhouse” (01 Mar 2010)

[general]

	reintroduced the ez_setup.py file.

	fixes for AKAs on ‘release dates’.

	added the dtd.

	What’s new in release 4.5 “Invictus” (28 Feb 2010)

[general]

	moved to setuptools 0.6c11.

	trying to make the SVN release versions work fine.

	http/mobile should work in GAE (Google App Engine).

	added some goodies scripts, useful for programmers (see the
docs/goodies directory).

[http/mobile]

	removed urllib-based User-Agent header.

	fixes for some minor changes to IMDb’s html.

	fixes for garbage in movie quotes.

	improvements in the handling of AKAs.

[mobile]

	fixes for AKAs in search results.

[sql]

	fixes for bugs restoring imdbIDs.

	first steps to split CSV creation/insertion.

	What’s new in release 4.4 “Gandhi” (06 Jan 2010)

[general]

	introduced a logging facility; see README.logging.

	the ‘http’ and ‘mobile’ should be a lot more robust.

[http]

	fixes for the n-th set of changes to IMDb’s HTML.

	improvements to perfect-match searches.

	slightly simplified the parsers for search results.

[mobile]

	fixes for the n-th set of changes to IMDb’s HTML.

	slightly simplified the parsers for search results.

[sql]

	movies’ keywords are now correctly imported, using CSV files.

	minor fixes to handle crap in the plain text data files.

	removed an outdate parameter passed to SQLObject.

	made imdbpy2sql.py more robust in some corner-cases.

	fixes for the Windows environment.

	What’s new in release 4.3 “Public Enemies” (18 Nov 2009)

[general]

	the installer now takes care of .mo files.

	introduced, in the helpers module, the functions keyToXML and
translateKey, useful to translate dictionary keys.

	support for smart guessing of the language of a movie title.

	updated the DTD.

[http]

	fixed a lot of bugs introduced by the new IMDb.com design.

	nicer handling of HTTP 404 response code.

	fixed parsers for top250 and bottom100 lists.

	fixed a bug parsing AKAs.

	fixed misc bugs.

[mobile]

	removed duplicates in list of genres.

[sql]

	fixed a bug in the imdbpy2sql.py script using CSV files;
the ‘movie_info_idx’ and ‘movie_keyword’ were left
empty/with wrong data.

	What’s new in release 4.2 “Battlestar Galactica” (31 Aug 2009)

[general]

	the ‘local’ data access system is gone. See README.local.

	the imdb.parser.common package was removed, and its code integrated
in imdb.parser.sql and in the imdbpy2sql.py script.

	fixes for the installer.

	the helpers module contains the fullSizeCoverURL function, to convert
a Movie, Person or Character instance (or a URL in a string)
in an URL to the full-size version of its cover/headshot.
Courtesy of Basil Shubin.

	used a newer version of msgfmt.py, to work around a hideous bug
generating locales.

	minor updates to locales.

	updated the DTD to version 4.2.

[http]

	removed garbage at the end of quotes.

	fixed problems parsing company names and notes.

	keys in character’s quotes dictionary are now Movie instances.

	fixed a bug converting entities char references (affected BeautifulSoup).

	fixed a long-standing bug handling & with BeautifulSoup.

	top250 is now correctly parsed by BeautifulSoup.

[sql]

	fixed DB2 call for loading blobs/cblobs.

	information from obsolete files are now used if and only if they
refer to still existing titles.

	the –fix-old-style-titles argument is now obsolete.

	What’s new in release 4.1 “State Of Play” (02 May 2009)

[general]

	DTD definition.

	support for locale.

	support for the new style for movie titles (“The Title” and no
more “Title, The” is internally used).

	minor fix to XML code to work with the test-suite.

[http]

	char references in the &#xHEXCODE; format are handled.

	fixed a bug with movies containing ‘….’ in titles. And I’m
talking about Malcolm McDowell’s filmography!

	‘airing’ contains object (so the accessSystem variable is set).

	‘tv schedule’ (‘airing’) pages of episodes can be parsed.

	‘tv schedule’ is now a valid alias for ‘airing’.

	minor fixes for empty/wrong strings.

[sql]

	in the database, soundex values for titles are always calculated
after the article is stripped (if any).

	imdbpy2sql.py has the –fix-old-style-titles option, to handle
files in the old format.

	fixed a bug saving imdbIDs.

[local]

	the ‘local’ data access system should be considered obsolete, and
will probably be removed in the next release.

	What’s new in release 4.0 “Watchmen” (12 Mar 2009)

[general]

	the installer is now based on setuptools.

	new functions get_keyword and search_keyword to handle movie’s keywords
(example scripts included).

	Movie/Person/… keys (and whole instances) can be converted to XML.

	two new functions, get_top250_movies and get_bottom100_movies, to
retrieve lists of best/worst movies (example scripts included).

	searching for movies and persons - if present - the ‘akas’ keyword
is filled, in the results.

	‘quotes’ for movies is now always a list of lists.

	the old set of parsers (based on sgmllib.SGMLParser) are gone.

	fixed limitations handling multiple roles (with notes).

	fixed a bug converting somethingIDs to real imdbIDs.

	fixed some summary methods.

	updates to the documentation.

[http]

	adapted BeautifulSoup to lxml (internally, the lxml API is used).

	currentRole is no longer populated, for non-cast entries (everything
ends up into .notes).

	fixed a bug search for too common terms.

	fixed a bug identifying ‘kind’, searching for titles.

	fixed a bug parsing airing dates.

	fixed a bug searching for company names (when there’s a direct hit).

	fixed a bug handling multiple characters.

	fixed a bug parsing episode ratings.

	nicer keys for technical details.

	removed the ‘agent’ page.

[sql]

	searching for a movie, the original titles are returned, instead
of AKAs.

	support for Foreign Keys.

	minor changes to the db’s design.

	fixed a bug populating tables with SQLAlchemy.

	imdbpy2sql.py shows user time and system time, along with wall time.

[local]

	searching for a movie, the original titles are returned, instead
of AKAs.

	What’s new in release 3.9 “The Strangers” (06 Jan 2009)

[general]

	introduced the search_episode method, to search for episodes’ titles.

	movie[‘year’] is now an integer, and no more a string.

	fixed a bug parsing company names.

	introduced the helpers.makeTextNotes function, useful to pretty-print
strings in the ‘TEXT::NOTE’ format.

[http]

	fixed a bug regarding movies listed in the Bottom 100.

	fixed bugs about tv mini-series.

	fixed a bug about ‘series cast’ using BeautifulSoup.

[sql]

	fixes for DB2 (with SQLAlchemy).

	improved support for movies’ aka titles (for series).

	made imdbpy2sql.py more robust, catching exceptions even when huge
amounts of data are skipped due to errors.

	introduced CSV support in the imdbpy2sql.py script.

	What’s new in release 3.8 “Quattro Carogne a Malopasso” (03 Nov 2008)

[http]

	fixed search system for direct hits.

	fixed IDs so that they always are str and not unicode.

	fixed a bug about plot without authors.

	for pages about a single episode of a series, “Series Crew” are
now separated items.

	introduced the preprocess_dom method of the DOMParserBase class.

	handling rowspan for DOMHTMLAwardsParser is no more a special case.

	first changes to remove old parsers.

[sql]

	introduced support for SQLAlchemy.

[mobile]

	fixed multiple ‘nick names’.

	added ‘aspect ratio’.

	fixed a “direct hit” bug searching for people.

[global]

	fixed search_* example scripts.

	updated the documentation.

	What’s new in release 3.7 “Burn After Reading” (22 Sep 2008)

[http]

	introduced a new set of parsers, active by default, based on DOM/XPath.

	old parsers fixed; ‘news’, ‘genres’, ‘keywords’, ‘ratings’, ‘votes’,
‘tech’, ‘taglines’ and ‘episodes’.

[sql]

	the pure python soundex function now behaves correctly.

[general]

	minor updates to the documentation, with an introduction to the
new set of parsers and notes for packagers.

	What’s new in release 3.6 “RahXephon” (08 Jun 2008)

[general]

	support for company objects for every data access systems.

	introduced example scripts for companies.

	updated the documentation.

[http and mobile]

	changes to support the new HTML for “plot outline” and some lists
of values (languages, genres, …)

	introduced the set_cookies method to set cookies for IMDb’s account and
the del_cookies method to remove the use of cookies; in the imdbpy.cfg
configuration file, options “cookie_id” and “cookie_uu” can be set to
the appropriate values; if “cookie_id” is None, no cookies are sent.

	fixed parser for ‘news’ pages.

	fixed minor bug fetching movie/person/character references.

[http]

	fixed a search problem, while not using the IMDbPYweb’s account.

	fixed bugs searching for characters.

[mobile]

	fixed minor bugs parsing search results.

[sql]

	fixed a bug handling movieIDs, when there are some
inconsistencies in the plain text data files.

[local]

	access to ‘mpaa’ and ‘miscellaneous companies’ information.

	What’s new in release 3.5 “Blade Runner” (19 Apr 2008)

[general]

	first changes to work on Symbian mobile phones.

	now there is an imdb.available_access_systems() function, that can
be used to get a list of available data access systems.

	it’s possible to pass ‘results’ as a parameter of the imdb.IMDb
function; it sets the number of results to return for queries.

	fixed summary() method in Movie and Person, to correctly handle
unicode chars.

	the helpers.makeObject2Txt function now supports recursion over
dictionaries.

	cutils.c MXLINELEN increased from 512 to 1024; some critical
strcpy replaced with strncpy.

	fixed configuration parser to be compatible with Python 2.2.

	updated list of articles and some stats in the comments.

	documentation updated.

[sql]

	fixed minor bugs in imdbpy2sql.py.

	restores imdbIDs for characters.

	now CharactersCache honors custom queries.

	the imdbpy2sql.py’s –mysql-force-myisam command line option can be
used to force usage of MyISAM tables on InnoDB databases.

	added some warnings to the imdbpy2sql.py script.

[local]

	fixed a bug in the fall-back function used to scan movie titles,
when the cutils module is not available.

	mini biographies are cut up to 2**16-1 chars, to prevent troubles
with some MySQL servers.

	fixed bug in characters4local.py, dealing with some garbage in the files.

	What’s new in release 3.4 “Flatliners” (16 Dec 2007)

[general]

	* NOTE FOR PACKAGERS * in the docs directory there is the
“imdbpy.cfg” configuration file, which should be installed in /etc
or equivalent directory; the setup.py script doesn’t manage its
installation.

	introduced a global configuration file to set IMDbPY’s parameters.

	supported characters using “sql” and “local” data access systems.

	fixed a bug retrieving characterID from a character’s name.

[http]

	fixed a bug in “release dates” parser.

	fixed bugs in “episodes” parser.

	fixed bugs reading “series years”.

	stricter definition for ParserBase._re_imdbIDmatch regular expression.

[mobile]

	fixed bugs reading “series years”.

	fixed bugs reading characters’ filmography.

[sql]

	support for characters.

[local]

	support for characters.

	introduced the characters4local.py script.

	What’s new in release 3.3 “Heroes” (18 Nov 2007)

[general]

	first support for character pages; only for “http” and “mobile”, so far.

	support for multiple characters.

	introduced an helper function to pretty-print objects.

	added README.currentRole.

	fixed minor bug in the __hash__ method of the _Container class.

	fixed changes to some key names for movies.

	introduced the search_character.py, get_character.py and
get_first_character.py example scripts.

[http]

	full support for character pages.

	fixed a bug retrieving some ‘cover url’.

	fixed a bug with multi-paragraphs biographies.

	parsers are now instanced on demand.

	accessSystem and modFunct are correctly set for every Movie, Person
and Character object instanced.

[mobile]

	full support for character pages.

[sql]

	extended functionality of the custom queries support for the
imdbpy2sql.py script to circumvent a problem with MS SQLServer.

	introducted the “–mysql-innodb” and “–ms-sqlserver” shortcuts
for the imdbpy2sql.py script.

	introduced the “–sqlite-transactions” shortcut to activate
transaction using SQLite which, otherwise, would have horrible
performances.

	fixed a minor bug with top/bottom ratings, in the imdbpy2sql.py script.

[local]

	filtered out some crap in the “quotes” plain text data files, which
also affected sql, importing the data.

	What’s new in release 3.2 “Videodrome” (25 Sep 2007)

[global]

	now there’s an unique place where “akas.imdb.com” is set, in the
main module.

	introduced __version__ and VERSION in the main module.

	minor improvements to the documentation.

[http]

	updated the main movie parser to retrieve the recently modified
cast section.

	updated the crazy credits parser.

	fixed a bug retrieving ‘cover url’.

[mobile]

	fixed a bug parsing people’s filmography when only one duty
was listed.

	updated to retrieve series’ creator.

[sql]

	added the ability to perform custom SQL queries at the command
line of the imdbpy2sql.py script.

	minor fixes for the imdbpy2sql.py script.

	What’s new in release 3.1 “The Snake King” (18 Jul 2007)

[global]

	the IMDbPYweb account now returns a single item, when a search
returns only one “good enough” match (this is the IMDb’s default).

	updated the documentation.

	updated list of contributors and developers.

[http]

	supported the new result page for searches.

	supported the ‘synopsis’ page.

	supported the ‘parents guide’ page.

	fixed a bug retrieving notes about a movie’s connections.

	fixed a bug for python2.2 (s60 mobile phones).

	fixed a bug with ‘Production Notes/Status’.

	fixed a bug parsing role/duty and notes (also for httpThin).

	fixed a bug retrieving user ratings.

	fixed a bug (un)setting the proxy.

	fixed 2 bugs in movie/person news.

	fixed a bug in movie faqs.

	fixed a bug in movie taglines.

	fixed a bug in movie quotes.

	fixed a bug in movie title, in “full cast and crew” page.

	fixed 2 bugs in persons’ other works.

[sql]

	hypothetical fix for a unicode problem in the imdbpy2sql.py script.

	now the ‘imdbID’ fields in the Title and Name tables are restored,
updating from an older version.

	fixed a nasty bug handling utf-8 strings in the imdbpy2sql.py script.

[mobile]

	supported the new result page for searches.

	fixed a bug for python2.2 (s60 mobile phones).

	fixed a bug searching for persons with single match and no
messages in the board.

	fixed a bug parsing role/duty and notes.

	What’s new in release 3.0 “Spider-Man 3” (03 May 2007)

[global]

	IMDbPY now works with the new IMDb’s site design; a new account is
used to access data; this affect a lot of code, especially in the
‘http’, ‘httpThin’ and ‘mobile’ data access systems.

	every returned string should now be unicode; dictionary keywords are
not guaranteed to be unicode (but they are always 7bit strings).

	fixed a bug in the __contains__ method of the Movie class.

	fix in the analyze_title() function to handle malformed episode
numbers.

[http]

	introduced the _in_content instance variable for objects instances of
ParserBase, True when inside the <div id=”tn15content”> tag.
Opening and closing this pair of tags two methods, named _begin_content()
and _end_content() are called with no parameters (by default, they do
nothing).

	in the utils module there’s the build_person function, useful to create
a Person instance from the tipical formats found in the IMDb’s web site.

	an analogue build_movie function can be used to instance Movie objects.

	inverted the getRefs default - now if not otherwise set, it’s False.

	added a parser for the “merchandising” (“for sale”) page for persons.

	the ‘rating’ parser now collects also ‘rating’ and ‘votes’ data.

	the HTMLMovieParser class (for movies) was rewritten from zero.

	the HTMLMaindetailsParser class (for persons) was rewritten from zero.

	unified the “episode list” and “episodes cast” parsers.

	fixed a bug parsing locations, which resulted in missing information.

	locations_parser splitted from “tech” parser.

	“connections” parser now handles the recently introduced notes.

[http parser conversion]

	these parsers worked out-of-the-box; airing, eprating, alternateversions,
dvd, goofs, keywords, movie_awards, movie_faqs, person_awards, rec,
releasedates, search_movie, search_person, soundclips, soundtrack, trivia,
videoclips.

	these parsers were fixed; amazonrev, connections, episodes, crazycredits,
externalrev, misclinks, newsgrouprev, news, officialsites, otherworks,
photosites, plot, quotes, ratings, sales, taglines, tech, business,
literature, publicity, trivia, videoclips, maindetails, movie.

[mobile]

	fixed to work with the new design.

	a lot of code is now shared amongst ‘http’ and ‘mobile’.

[sql]

	fixes for other bugs related to unicode support.

	minor changes to slightly improve performances.

	What’s new in release 2.9 “Rodan! The Flying Monster” (21 Feb 2007)

[global]

	on 19 February IMDb has redesigned its site; this is the last
IMDbPY’s release to parse the “old layout” pages; from now on,
the development will be geared to support the new web pages.
See the README.redesign file for more information.

	minor clean-ups and functions added to the helpers module.

[http]

	fixed some unicode-related problems searching for movie titles and
person names; also changed the queries used to search titles/names.

	fixed a bug parsing episodes for tv series.

	fixed a bug retrieving movieID for tv series, searching for titles.

[mobile]

	fixed a problem searching exact matches (movie titles only).

	fixed a bug with cast entries, after minor changes to the IMDb’s
web site HTML.

[local and sql]

	fixed a bug parsing birth/death dates and notes.

[sql]

	(maybe) fixed another unicode-related bug fetching data from a
MySQL database. Maybe. Maybe. Maybe.

	What’s new in release 2.8 “Apollo 13” (14 Dec 2006)

[general]

	fix for environments where sys.stdin was overridden by a custom object.

[http data access system]

	added support for the movies’ “FAQ” page.

	now the “full credits” (aka “full cast and crew”) page can be parsed;
it’s mostly useful for tv series, because this page is complete while
“combined details” contains only partial data.
E.g.

ia.update(tvSeries, ‘full credits’)

	added support for the movies’ “on television” (ia.update(movie, “airing”))

	fixed a bug with ‘miscellaneous companies’.

	fixed a bug retrieving the list of episodes for tv series.

	fixed a bug with tv series episodes’ cast.

	generic fix for XML single tags (unvalid HTML tags) like

	fixed a minor bug with ‘original air date’.

[sql data access system]

	fix for a unicode bug with recent versions of SQLObject and MySQL.

	fix for a nasty bug in imdbpy2sql.py that will show up splitting a
data set too large to be sent in a single shot to the database.

[mobile data access system]

	fixed a bug searching titles and names, where XML char references
were not converted.

	What’s new in release 2.7 “Pitch Black” (26 Sep 2006)

[general]

	fixed search_movie.py and search_person.py scripts; now they return
both the movieID/personID and the imdbID.

	the IMDbPY account was configured to hide the mini-headshots.

	http and mobile data access systems now try to handle queries
with too many results.

[http data access system]

	fixed a minor bug retrieving information about persons, with movies
in production.

	fixed support for cast list of tv series.

	fixed a bug retrieving ‘plot keywords’.

	some left out company credits are now properly handled.

[mobile data access system]

	fixed a major bug with the cast list, after the changes to the
IMDb web site.

	fixed support for cast list of tv series.

	fixed a minor bug retrieving information about persons, with movies
in production.

	now every AKA title is correctly parsed.

[sql data access system]

	fixed a(nother) bug updating imdbID for movies and persons.

	fixed a bug retrieving personID, while handling names references.

[local data access system]

	“where now” information now correctly handles multiple lines (also
affecting the imdbpy2sql.py script).

	What’s new in release 2.6 “They Live” (04 Jul 2006)

[general]

	renamed sortMovies to cmpMovies and sortPeople to cmpPeople; these
function are now used to compare Movie/Person objects.
The cmpMovies also handles tv series episodes.

[http data access system]

	now information about “episodes rating” are retrieved.

	fixed a bug retrieving runtimes and akas information.

	fixed an obscure bug trying an Exact Primary Title/Name search when
the provided title was wrong/incomplete.

	support for the new format of the “DVD details” page.

[sql data access system]

	now at insert-time the tables doesn’t have indexes, which are
added later, resulting in a huge improvement of the performances
of the imdbpy2sql.py script.

	searching for tv series episodes now works.

	fixed a bug inserting information about top250 and bottom10 films rank.

	fixed a bug sorting movies in people’s filmography.

	fixed a bug filtering out adult-only movies.

	removed unused ForeignKeys in the dbschema module.

	fixed a bug inserting data in databases that require a commit() call,
after a call to executemany().

	fixed a bug inserting aka titles in database that checks for foreign
keys consistency.

	fixed an obscure bug splitting too huge data sets.

	MoviesCache and PersonsCache are now flushed few times.

	fixed a bug handling excessive recursion.

	improved the exceptions handling.

	What’s new in release 2.5 “Ninja Thunderbolt” (15 May 2006)

[general]

	support for tv series episodes; see the README.series file.

	modified the DISCLAIMER.txt file to be compliant to the debian guidelines.

	fixed a bug in the get_first_movie.py script.

	Movie and Person instances are now hashable, so that they can be used
as dictionary keys.

	modified functions analyze_title and build_title to support tv episodes.

	use isinstance for type checking.

	minor updates to the documentation.

	the imdbID for Movie and Person instances is now searched if either
one of movieID/personID and title/name is provided.

	introduced the isSame() method for both Movie and Person classes,
useful to compare object by movieID/personID and accessSystem.

	__contains__() methods are now recursive.

	two new functions in the IMDbBase class, title2imdbID() and name2imdbID()
are used to get the imdbID, given a movie title or person name.

	two new functions in the helpers module, sortedSeasons() and
sortedEpisodes(), useful to manage lists/dictionaries of tv series
episodes.

	in the helpers module, the get_byURL() function can be used to retrieve
a Movie or Person object for the given URL.

	renamed the “ratober” C module to “cutils”.

	added CONTRIBUTORS.txt file.

[http data access system]

	fixed a bug regarding currentRole for tv series.

	fixed a bug about the “merchandising links” page.

[http and mobile data access systems]

	fixed a bug retrieving cover url for tv (mini) series.

[mobile data access system]

	fixed a bug with tv series titles.

	retrieves the number of episodes for tv series.

[local data access system]

	new get_episodes function in the cutils/ratober C module.

	search functions (both C and pure python) are now a lot faster.

	updated the documentation with work-arounds to make the mkdb program
works with a recent set of plain text data files.

[sql data access system]

	uses the SQLObject ORM to support a wide range of database engines.

	added in the cutils C module the soundex() function, and a fall back
Python only version in the parser.sql package.

	What’s new in release 2.4 “Munich” (09 Feb 2006)

[general]

	strings are now unicode/utf8.

	unified Movie and Person classes.

	the strings used to store every kind of information about movies and
person now are modified (substituting titles and names references)
only when it’s really needed.

	speed improvements in functions modifyStrings, sortMovies,
canonicalName, analyze_name, analyze_title.

	performance improvements in every data access system.

	removed the deepcopy of the data, updating Movie and Person
information.

	moved the “ratober” C module in the imdb.parser.common package,
being used by both “”http” and “sql” data access systems.

	C functions in the “ratober” module are always case insensitive.

	the setup.py script contains a work-around to make installation
go on even if the “ratober” C module can’t be compiled (displaying
a warning), since it’s now optional.

	minor updates to documentation, to keep it in sync with changes
in the code.

	the new helpers.py module contains functions useful to write
IMDbPY-based programs.

	new doc file README.utf8, about unicode support.

[http data access system]

	the ParserBase class now inherits from sgmllib.SGMLParser,
instead of htmllib.HTMLParser, resulting in a little improvement
in parsing speed.

	fixed a bug in the parser for the “news” page for movies and
persons.

	removed special handlers for entity and chardefs in the HTMLMovieParser
class.

	fixed bugs related to non-ascii chars.

	fixed a bug retrieving the URL of the cover.

	fixed a nasty bug retrieving the title field.

	retrieve the ‘merchandising links’ page.

	support for the new “episodes cast” page for tv series.

	fixed a horrible bug retrieving guests information for tv series.

[sql data access system]

	fixed the imdbpy2sql.py script, to handle files with spurious lines.

	searches for names and titles are now much faster, if the
imdb.parser.common.ratober C module is compiled and installed.

	imdbpy2sql.py now works also on partial data (i.e. if you’ve not
downloaded every single plain text file).

	imdbpy2sql.py considers also a couple of files in the contrib directory.

	searching names and titles, only the first 5 chars returned from
the SOUNDEX() SQL function are compared.

	should works if the database is set to unicode/utf-8.

[mobile data access system]

	fixed bugs related to non-ascii chars.

	fixed a bug retrieving the URL of the cover.

	retrieve currentRole/notes also for tv guest appearances.

[local data access system]

	it can work even if the “ratober” C module is not compiled;
obviously the pure python substitute is painfully slow (a
warning is issued).

	What’s new in release 2.3 “Big Fish” (03 Dec 2005)

[general]

	uniformed numerous keys for Movie and Person objects.

	‘birth name’ is now always in canonical form, and ‘nick names’
are always normalized; these changes also affect the sql data
access system.

[http data access system]

	removed the ‘imdb mini-biography by’ key; the name of the author
is now prepended to the ‘mini biography’ key.

	fixed an obscure bug using more than one access system (http in
conjunction with mobile or httpThin).

	fixed a bug in amazon reviews.

[mobile data access system]

	corrected some bugs retrieving filmography and cast list.

[sql data access system]

	remove ‘birth name’ and ‘nick names’ from the list of ‘akas’.

	in the SQL database, ‘crewmembers’ is now ‘miscellaneous crew’.

	fixed a bug retrieving “guests” for TV Series.

	What’s new in release 2.2 “The Thing” (17 Oct 2005)

[general]

	now the Person class has a ‘billingPos’ instance variable used to
keep record of the position of the person in the list of credits (as
an example, “Laurence Fishburne” is billed in 2nd position in the
cast list for the “Matrix, The (1999)” movie.

	added two functions to the utils module, to sort respectively
movies (by year/title/imdbIndex) and persons (by billingPos/name/imdbIndex).

	every data access system support the ‘adultSearch’ argument and the
do_adult_search() method to exclude the adult movies from your searches.
By default, adult movies are always listed.

	renamed the scripts, appending the “.py” extension.

	added an “IMDbPY Powered” logo and a bitmap used by the Windows installer.

	now Person and Movie objects always convert name/title to the canonical
format (Title, The).

	minor changes to the functions used to convert to “canonical format”
names and titles; they should be faster and with better matches.

	‘title’ is the first argument, instancing a Movie object (instead
of ‘movieID’).

	‘name’ is the first argument, instancing a Movie object (instead
of ‘personID’).

[http data access system]

	retrieves the ‘guest appearances’ page for TV series.

	fixed a bug retrieving newsgroup reviews urls.

	fixed a bug managing non-breaking spaces (they’re truly a damnation!)

	fixed a bug with mini TV Series in people’s biographies.

	now keywords are in format ‘bullet-time’ and no more ‘Bullet Time’.

[mobile data access system]

	fixed a bug with direct hits, searching for a person’s name.

	fixed a bug with languages and countries.

[local data access system]

	now cast entries are correctly sorted.

	new search system; it should return better matches in less
time (searching people’s name is still somewhat slow); it’s
also possibile to search for “long imdb canonical title/name”.

	fixed a bug retrieving information about a movie with the same
person listed more than one time in a given role/duty (e.g., the
same director for different episodes of a TV series). Now it
works fine and it should also be a bit faster.

	‘notable tv guest appearences’ in biography is now a list of Movie
objects.

	writers are sorted in the right order.

[sql data access system]

	search results are now sorted in correct order; difflib is used to
calculate strings similarity.

	new search SQL query and comparison algorithm; it should return
much better matches.

	searches for only a surname now returns much better results.

	fixed a bug in the imdbpy2sql.py script; now movie quotes are correctly
managed.

	added another role, ‘guests’, for notable tv guest appearences.

	writers are sorted in the right order.

	put also the ‘birth name’ and the ‘nick names’ in the akanames table.

	What’s new in release 2.1 “Madagascar” (30 Aug 2005)

[general]

	introduced the “sql data access system”; now you can transfer the
whole content of the plain text data files (distributed by IMDb)
into a SQL database (MySQL, so far).

	written a tool to insert the plain text data files in a SQL database.

	fixed a bug in items() and values() methods of Movie and Person
classes.

	unified portions of code shared between “local” and “sql”.

[http data access system]

	fixed a bug in the search_movie() and search_person() methods.

	parse the “external reviews”, “newsgroup reviews”, “newsgroup reviews”,
“misc links”, “sound clips”, “video clips”, “amazon reviews”, “news” and
“photo sites” pages for movies.

	parse the “news” page for persons.

	fixed a bug retrieving personID and movieID within namesRefs
and titlesRefs.

[local data access system]

	fixed a bug; ‘producer’ data where scanned two times.

	some tags were missing for the laserdisc entries.

[mobile data access system]

	fixed a bug retrieving cast information (sometimes introduced
with “Cast overview” and sometimes with “Credited cast”).

	fixed a bug in the search_movie() and search_person() methods.

	What’s new in release 2.0 “Land Of The Dead” (16 Jul 2005)

[general]

	WARNING! Now, using http and mobile access methods, movie/person
searches will include by default adult movie titles/pornstar names.
You can still deactivate this feature by setting the adultSearch
argument to false, or calling the do_adult_search() method with
a false value.

	fixed a bug using the ‘all’ keyword of the ‘update’ method.

[http data access system]

	added the “recommendations” page.

	the ‘notes’ instance variable is now correctly used to store
miscellaneous information about people in non-cast roles, replacing
the ‘currentRole’ variable.

	the adultSearch initialization argument is by default true.

	you can supply the proxy to use with the ‘proxy’ initialization
argument.

	retrieve the “plot outline” information.

	fixed a bug in the BasicMovieParser class, due to changes in the
IMDb’s html.

	the “rating details” parse information about the total number
of voters, arithmetic mean, median and so on. The values are
stored as integers and floats, and no more as strings.

	dictionary keys in soundtrack are lowercase.

	fixed a bug with empty ‘location’ information.

[mobile data access system]

	number of votes, rating and top 250 rank are now integers/floats.

	retrieve the “plot outline” information.

[local data access system]

	number of votes, rating and top 250 rank are now integers/floats.

	What’s new in release 1.9 “Ed Wood” (02 May 2005)

[general]

	introduced the new “mobile” data access system, useful for
small systems. It should be from 2 to 20 times faster than “http”
or “httpThin”.

	the “http”, “httpThin” and “mobile” data access system can now
search for adult movies. See the README.adult file.

	now it should works again with python 2.0 and 2.1.

	fixed a bug affecting performances/download time.

	unified some keywords amongst differents data access systems.

[http data access system]

	fixed some bugs; now it retrieves names akas correctly.

	What’s new in release 1.8 “Paths Of Glory” (24 Mar 2005)

[general]

	introduced a new data access system “httpThin”, useful for
systems with limited bandwidth and CPU power, like PDA,
hand-held devices and mobile phones.

	the setup.py script can be configured to not compile/install
the local access system and the example scripts (useful for
hand-held devices); introduced setup.cfg and MANIFEST.in files.

	updated the list of articles used to manage movie titles.

	removed the all_info tuples from Movie and Person classes,
since the list of available info sets depends on the access
system. I’ve added two methods to the IMDbBase class,
get_movie_infoset() and get_person_infoset().

	removed the IMDbNotAvailable exception.

	unified some code in methods get_movie(), get_person() and
update() in IMDbBase class.

	minor updates to the documentation; added a 46x46 PNG icon.

	documentation for small/mobile systems.

[Movie class]

	renamed the m[‘notes’] item of Movie objects to m[‘episodes’].

[Person class]

	the p.__contains__(m) method can be used to check if the p
Person has worked in the m Movie.

[local data access system]

	gather information about “laserdisc”, “literature” and “business”.

	fixed a bug in ratober.c; now the search_name() function
handles search strings already in the “Surname, Name” format.

	two new methods, get_lastMovieID() and get_lastPersonID().

[http data access system]

	limit the number of results for the query; this will save a
lot of bandwidth.

	fixed a bug retrieving the number of episodes of tv series.

	now it retrieves movies information about “technical specifications”,
“business data”, “literature”, “soundtrack”, “dvd” and “locations”.

	retrieves people information about “publicity” and “agent”.

	What’s new in release 1.7 “Saw” (04 Feb 2005)

[general]

	Person class has two new keys; ‘canonical name’ and
‘long imdb canonical name’, like “Gibson, Mel” and
“Gibson, Mel (I)”.

	now titles and names are always internally stored in the
canonical format.

	search_movie() and search_person() methods return the
“read” movieID or personID (handling aliases).

	Movie and Person objects have a ‘notes’ instance attribute,
used to specify comments about the role of a person in a movie.
The Movie class can also contain a [‘notes’] item, used to
store information about the runtime; e.g. (26 episodes).

	fixed minor bugs in the IMDbBase, Person and Movie classes.

	some performance improvements.

[http data access system]

	fixed bugs retrieving the currentRole.

	try to handle unicode chars; return unicode strings when required.

	now the searches return also “popular titles” and
“popular names” from the new IMDb’s search system.

[local data access system]

	information about movie connections are retrieved.

	support for multiple biographies.

	now it works with Python 2.2 or previous versions.

	fixed a minor glitch in the initialization of the ratober C module.

	fixed a pair buffer overflows.

	fixed some (very rare) infinite loops bugs.

	it raises IMDbDataAccessError for (most of) I/O errors.

[Movie class]
- fixed a bug getting the “long imdb canonical title”.

	What’s new in release 1.6 “Ninja Commandments” (04 Jan 2005)

[general]

	now inside Movie and Person object, the text strings (biography,
movie plot, etc.) contain titles and names references, like
“_Movie, The (1999)_ (qv)” or “‘A Person’ (qv)”; these reference
are transformed at access time with a user defined function.

	introduced _get_real_movieID and _get_real_personID methods
in the IMDbBase class, to handle title/name aliases for the
local access system.

	split the _normalize_id method in _normalize_movieID
and _normalize_personID.

	fixed some bugs.

[Movie class]

	now you can access the ‘canonical title’ and
‘long imdb canonical title’ attributes, to get the movie title
in the format “Movie Title, The”.

[local data access system]

	title and name aliases now work correctly.

	now get_imdbMovieID and get_imdbPersonID methods should
work in almost every case.

	people’s akas are handled.

[http data access system]

	now the BasicMovieParser class can correctly gather the imdbID.

	What’s new in release 1.5 “The Incredibles” (23 Dec 2004)

[local database]

	support a local installation of the IMDb database!
WOW! Now you can download the plain text data files from
http://imdb.com/interfaces.html and access those
information through IMDbPY!

[general]

	movie titles and person names are “fully normalized”;
Not “Matrix, The (1999)”, but “The Matrix (1999)”;
Not “Cruise, Tom” but “Tom Cruise”.

	get_mop_infoSet() methods can now return a tuple with the
dictionary data and a list of information sets they provided.

[http data access system]

	support for the new search system (yes, another one…)

	a lot of small fixes to stay up-to-date with the html
of the IMDb web server.

	modified the personParser module so that it will no
more download both “filmoyear” and “maindetails” pages;
now only the latter is parsed.

	movie search now correctly reports the movie year and index.

	gather “locations” information about a movie.

	modified the HTMLAwardsParser class so that it doesn’t list
empty entries.

	What’s new in release 1.4 “The Village” (10 Nov 2004)

[http data access system]

	modified the personParser.HTMLMaindetailsParser class,
because IMDb has changed the img tag for the headshot.

	now ‘archive footage’ is handled correctly.

[IMDb class]

	fixed minor glitches (missing “self” parameter in a
couple of methods).

[misc]

	now distutils installs also the example scripts in ./bin/*

	What’s new in release 1.3 “House of 1000 Corpses” (6 Jul 2004)

[http data access system]

	modified the BasicMovieParser and BasicPersonParser classes,
because IMDb has removed the “pageflicker” from the html pages.

[general]

	the test suite was moved outside the tgz package.

	What’s new in release 1.2 “Kill Bill” (2 May 2004)

[general]

	now it retrieves almost every available information about movie
and people!

	introduced the concept of “data set”, to retrieve different sets
of information about a movie/person (so that it’s possibile to
fetch only the needed information).

	introduced a test suite, using the PyUnit (unittest) module.

	fixed a nasty typo; the analyze_title and build_title functions
now use the strings ‘tv mini series’ and ‘tv series’ for the ‘kind’
key (previously the ‘serie’ word ws used).

	new design; removed the mix-in class and used a factory pattern;
imdb.IMDb is now a function, which returns an instance of a class,
subclass of imdb.IMDbBase.

	introduced the build_name(name_dict) function in the utils module,
which takes a dictionary and build a long imdb name.

	fixed bugs in the analyze_name function; now it correctly raise
an IMDbParserError exception for empty/all spaces strings.

	now the analyze_title function sets only the meaningful
information (i.e.: no ‘kind’ or ‘year’ key, if they’re not set)

[http data access system]

	removed all non-greedy regular expressions.

	removed all regular expressions in the movieParser module; now
self.rawdata is no more used to search “strange” matches.

	introduced a ParserBase class, used as base class for the parsers.

	retrieve information about the production status (pre-production,
announced, in production, etc.)

	mpaa is now a string.

	now when an IMDbDataAccessError is raised it shows also the
used proxy.

	minor changes to improve performances in the handle_data method of
the HTMLMovieParser class.

	minor changes to achieve a major performances improvement in
the BasicPersonParser class in the searchPersonParse module.

[Movie class]

	fixed a bug in isSameTitle method, now the accessSystem is correctly
checked.

	fixed some typos.

[Person class]

	minor changes to the isSamePerson method (now it uses the build_name
function).

	What’s new in release 1.1 “Gigli” (17 Apr 2004)

[general]

	added support for persons (search & retrieve information about people).

	removed the dataSets module.

	removed the MovieTitle and the SearchMovieResults classes; now information
about the title is stored directly in the Movie object and the search
methods return simple lists (of Movie or Person objects).

	removed the IMDbTitleError exception.

	added the analyze_name() function in the imdb.utils module, which
returns a dictionary with the ‘name’ and ‘imdbIndex’ keys from the
given long imdb name string.

[http data access system]

	http search uses the new search system.

	moved the plotParser module content inside the movieParser module.

	fixed a minor bug handling AKAs for movie titles.

[IMDb class]

	introduced the update(obj) method of the IMDb class, to update
the information of the given object (a Movie or Person instance).

	added the get_imdbURL(obj) method if the IMDb class, which returns
the URL of the main IMDb page for the given object (a Movie or Person).

	renamed the ‘kind’ parameter of the IMDb class to ‘accessSystem’.

[Movie class]

	now __str__() returns only the short name; the summary() method
returns a pretty-printed string for the Movie object.

	persons are no more simple strings, but Person objects (the role/duty
is stored in the currentRole variable of the object).

	isSameTitle(obj) method to compare two Movie objects even when
not all information are gathered.

	new __contains__() method, to check is a given person was in a movie.

[misc]

	updated the documentation.

	corrected some syntax/grammar errors.

	What’s new in release 1.0 “Equilibrium” (01 Apr 2004)

[general]

	first public release.

	retrieve data only from the web server.

	search only for movie titles.

Index

imdb.Character

imdb.Company

imdb.Movie

imdb.Person

imdb._exceptions

imdb._logging

imdb.cli

imdb.helpers

imdb

imdb.linguistics

imdb.locale

imdb.parser.http.companyParser

imdb.parser.http.movieParser

imdb.parser.http.personParser

imdb.parser.http.searchCompanyParser

imdb.parser.http.searchKeywordParser

imdb.parser.http.searchMovieParser

imdb.parser.http.searchPersonParser

imdb.parser.http.topBottomParser

imdb.parser.http.utils

imdb.parser.http

imdb.parser.s3.utils

imdb.parser.s3

imdb.parser.sql.alchemyadapter

imdb.parser.sql.dbschema

imdb.parser.sql

imdb.parser

imdb.utils

Characters

Warning

Since the end of 2017 characters are no longer available on the IMDb site.
We’ll continue to support the Character class for some time, but beware that its
mostly useless, at this time.

It works mostly like the Person class. :-)

For more information about the “currentRole” attribute, see the
README.currentRole file.

Character associated to a person who starred in a movie, and its notes:

person_in_cast = movie['cast'][0]
notes = person_in_cast.notes
character = person_in_cast.currentRole

Check whether a person worked in a given movie or not:

person in movie
movie in person

Companies

Warning

Since the end of 2017 characters are no longer available on the IMDb site.
We’ll continue to support the Character class for some time, but beware that its
mostly useless, at this time.

It works mostly like the Person class. :-)

The “currentRole” attribute is always None.

As for Person/Character and Movie objects, you can test -using the “in”
operator- if a Company has worked on a given Movie.

Movies

Below is a list of each main key, the type of its value, and a short
description or an example:

	title (string)
	The “usual” title of the movie, like “The Untouchables”.

	long imdb title (string)
	“Uncommon Valor (1983/II) (TV)”

	canonical title (string)
	The title in canonical format, like “Untouchables, The”.

	long imdb canonical title (string)
	“Patriot, The (2000)”

	year (string)
	The release year, or ‘????’ if unknown.

	kind (string)
	One of: ‘movie’, ‘tv series’, ‘tv mini series’, ‘video game’, ‘video movie’,
‘tv movie’, ‘episode’

	imdbIndex (string)
	The roman numeral for movies with the same title/year.

	director (Person list)
	A list of directors’ names, e.g.: [‘Brian De Palma’].

	cast (Person list)
	A list of actors/actresses, with the currentRole instance variable
set to a Character object which describe his role.

	cover url (string)
	The link to the image of the poster.

	writer (Person list)
	A list of writers, e.g.: [‘Oscar Fraley (novel)’].

	plot (list)
	A list of plot summaries and their authors.

	rating (string)
	User rating on IMDb from 1 to 10, e.g. ‘7.8’.

	votes (string)
	Number of votes, e.g. ‘24,101’.

	runtimes (string list)
	List of runtimes in minutes [‘119’], or something like [‘USA:118’, ‘UK:116’].

	number of episodes (int)
	Number or episodes for a TV series.

	color info (string list)
	[“Color (Technicolor)”]

	countries (string list)
	Production’s country, e.g. [‘USA’, ‘Italy’].

	genres (string list)
	One or more of: Action, Adventure, Adult, Animation, Comedy, Crime,
Documentary, Drama, Family, Fantasy, Film-Noir, Horror, Musical, Mystery,
Romance, Sci-Fi, Short, Thriller, War, Western, and other genres
defined by IMDb.

	akas (string list)
	List of alternative titles.

	languages (string list)
	A list of languages.

	certificates (string list)
	[‘UK:15’, ‘USA:R’]

	episodes (series only) (dictionary of dictionaries)
	One key for every season, one key for every episode in the season.

	number of episodes (series only) (int)
	Total number of episodes.

	number of seasons (series only) (int)
	Total number of seasons.

	series years (series only) (string)
	Range of years when the series was produced.

	episode of (episodes only) (Movie object)
	The series to which the episode belongs.

	season (episodes only) (int)
	The season number.

	episode (episodes only) (int)
	The number of the episode in the season.

	long imdb episode title (episodes only) (string)
	Episode and series title.

	series title (string)
	The title of the series to which the episode belongs.

	canonical series title (string)
	The canonical title of the series to which the episode belongs.

Other keys that contain a list of Person objects are: costume designer,
sound crew, crewmembers, editor, production manager, visual effects,
assistant director, art department, composer, art director, cinematographer,
make up, stunt performer, producer, set decorator, production designer.

Other keys that contain list of companies are: production companies, special
effects, sound mix, special effects companies, miscellaneous companies,
distributors.

Converting a title to its “Title, The” canonical format, Cinemagoer makes
some assumptions about what is an article and what isn’t, and this could
lead to some wrong canonical titles. For more information on this subject,
see the “ARTICLES IN TITLES” section of the README.locale file.

Persons

It works mostly like the Movie class. :-)

The Movie class defines a __contains__() method, which is used to check
if a given person has worked in a given movie with the syntax:

if personObject in movieObject:
 print('%s worked in %s' % (personObject['name'], movieObject['title']))

The Person class defines a isSamePerson(otherPersonObject) method, which
can be used to compare two person objects. This can be used to check whether
an object has retrieved complete information or not, as in the case of a Person
object returned by a query:

if personObject.isSamePerson(otherPersonObject):
 print('they are the same person!')

A similar method is defined for the Movie class, and it’s called
isSameTitle(otherMovieObject).

Querying data

Method descriptions:

	search_movie(title, results=None, _episodes=False)
	Searches for the given title, and returns a list of Movie objects containing
only basic information like the movie title and year, and with a “movieID”
instance variable. The return parameter can be set to an integer value to
specify how many results should be retured by search_movie. If _episodes is
set to true then episodes containing the title parameter are also returned:

	movieID is an identifier of some kind; for the sake of simplicity
you can think of it as the ID used by the IMDb’s web server used
to uniquely identify a movie (e.g.: ‘0094226’ for Brian De Palma’s
“The Untouchables”), but keep in mind that it’s not necessary the
same ID!!!

For some implementations of the “data access system” these two IDs can
be the same (as is the case for the ‘http’ data access system), but
other access systems can use a totally different kind of movieID.
The easier (I hope!) way to understand this is to think of the movieID
returned by the search_movie() method as the thing you have to pass
to the get_movie() method, so that it can retrieve info about the referred
movie.

So, movieID can be the imdbID (‘0094226’) if you’re accessing the web
server, but with a SQL installation of the IMDb database, movieID will be
an integer, as read from the id column in the database.

	search_episode(title)
	This is identical to search_movie(), except that it is tailored
to searching for titles of TV series episodes. Best results are expected
when searching for just the title of the episode, without the title
of the TV series.

	get_movie(movieID)
	This will fetch the needed data and return a Movie object for the movie
referenced by the given movieID. The Movie class can be found in the Movie
module. A Movie object presents basically the same interface of a Python’s
dictionary; so you can access, for example, the list of actors and actresses
using the syntax movieObject['cast'].

The search_person(name), get_person(personID),
search_character(name), get_character(characterID),
search_company(name), and get_company(companyID) methods work the same
way as search_movie(title) and get_movie(movieID).

The search_keyword(string) method returns a list of strings that are
valid keywords, similar to the one given.

The get_keyword(keyword) method returns a list of Movie instances that
are tagged with the given keyword.

The get_imdbMovieID(movieID), get_imdbPersonID(personID),
get_imdbCharacterID(characterID), and get_imdbCompanyID(companyID)
methods take, respectively, a movieID, a personID, a movieID, or a companyID
and return the relative imdbID; it’s safer to use the
get_imdbID(MovieOrPersonOrCharacterOrCompanyObject) method.

The title2imdbID(title), name2imdbID(name), character2imdbID(name),
and company2imdbID(name) methods take, respectively, a movie title
(in the plain text data files format), a person name, a character name, or
a company name, and return the relative imdbID; when possible it’s safer
to use the get_imdbID(MovieOrPersonOrCharacterOrCompanyObject) method.

The get_imdbID(MovieOrPersonOrCharacterOrCompanyObject) method returns
the imdbID for the given Movie, Person, Character or Company object.

The get_imdbURL(MovieOrPersonOrCharacterOrCompanyObject) method returns
a string with the main IMDb URL for the given Movie, Person, Character, or
Company object; it does its best to retrieve the URL.

The update(MovieOrPersonOrCharacterOrCompanyObject) method takes
an instance of a Movie, Person, Character, or Company class, and retrieves
other available information.

Remember that the search_*(txt) methods will return a list of Movie,
Person, Character or Company objects with only basic information,
such as the movie title or the person/character name. So, update() can be
used to retrieve every other information.

By default a “reasonable” set of information are retrieved: ‘main’,
‘filmography’, and ‘biography’ for a Person/Character object; ‘main’ and ‘plot’
for a Movie object; ‘main’ for a Company object.

Example:

only basic information like the title will be printed.
print(first_match.summary())
update the information for this movie.
i.update(first_match)
a lot of information will be printed!
print(first_match.summary())
retrieve trivia information
i.update(first_match, 'trivia')
 print(m['trivia'])
retrieve both 'quotes' and 'goofs' information (with a list or tuple)
i.update(m, ['quotes', 'goofs'])
print(m['quotes'])
print(m['goofs'])
retrieve every available information.
i.update(m, 'all')

 _static/plus.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Cinemagoer

 		
 Usage

 		
 Quick start

 		
 Searching

 		
 Retrieving

 		
 Keywords

 		
 Top / bottom movies

 		
 Exceptions

 		
 Data interface

 		
 Information sets

 		
 Composite data

 		
 References

 		
 Roles

 		
 SQL

 		
 Goodies

 		
 Series

 		
 Titles

 		
 Full credits

 		
 Ratings

 		
 People

 		
 Goodies

 		
 Adult movies

 		
 Information in XML format

 		
 XML format

 		
 References

 		
 DTD

 		
 Localization

 		
 Deserializing

 		
 Localization

 		
 Articles in titles

 		
 Alternative titles

 		
 Access systems

 		
 S3 datasets

 		
 Old data files

 		
 Performance

 		
 Notes

 		
 Advanced features

 		
 CSV files

 		
 Development

 		
 How to extend

 		
 How to test

 		
 make

 		
 tox

 		
 S3 dataset

 		
 How to translate

 		
 How to make a release

 		
 FAQs

 		
 Contributors

 		
 Change log

